photodegradation rate
Recently Published Documents


TOTAL DOCUMENTS

126
(FIVE YEARS 38)

H-INDEX

12
(FIVE YEARS 2)

Water ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 242
Author(s):  
Idrees Khan ◽  
Khalid Saeed ◽  
Ivar Zekker ◽  
Baoliang Zhang ◽  
Abdulmajeed H. Hendi ◽  
...  

The unavailability of clean drinking water is one of the significant health issues in modern times. Industrial dyes are one of the dominant chemicals that make water unfit for drinking. Among these dyes, methylene blue (MB) is toxic, carcinogenic, and non-biodegradable and can cause a severe threat to human health and environmental safety. It is usually released in natural water sources, which becomes a health threat to human beings and living organisms. Hence, there is a need to develop an environmentally friendly, efficient technology for removing MB from wastewater. Photodegradation is an advanced oxidation process widely used for MB removal. It has the advantages of complete mineralization of dye into simple and nontoxic species with the potential to decrease the processing cost. This review provides a tutorial basis for the readers working in the dye degradation research area. We not only covered the basic principles of the process but also provided a wide range of previously published work on advanced photocatalytic systems (single-component and multi-component photocatalysts). Our study has focused on critical parameters that can affect the photodegradation rate of MB, such as photocatalyst type and loading, irradiation reaction time, pH of reaction media, initial concentration of dye, radical scavengers and oxidising agents. The photodegradation mechanism, reaction pathways, intermediate products, and final products of MB are also summarized. An overview of the future perspectives to utilize MB at an industrial scale is also provided. This paper identifies strategies for the development of effective MB photodegradation systems.


Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1548
Author(s):  
Beata Szczepanik ◽  
Piotr Słomkiewicz ◽  
Dariusz Wideł ◽  
Marianna Czaplicka ◽  
Laura Frydel

The kinetics of photocatalytic degradation of aniline, 2-chloroaniline, and 2,6-dichloroaniline in the presence of halloysite-TiO2 and halloysite-Fe2O3 nanocomposites, halloysite containing naturally dispersed TiO2, Fe2O3, commercial TiO2, P25, and α-Fe2O3 photocatalysts, were investigated with two approaches: the Langmuir–Hinshelwood and first-order equations. Adsorption equilibrium constants and adsorption enthalpies, photodegradation rate constants, and activation energies for photocatalytic degradation were calculated for all studied amines photodegradation. The photodegradation mechanism was proposed according to organic intermediates identified by mass spectrometry and electrophoresis methods. Based on experimental results, it can be concluded that after 300 min of irradiation, aniline, 2-chloro-, and 2,6-dichloroaniline were completely degraded in the presence of used photocatalysts. Research results allowed us to conclude that higher adsorption capacity and immobilization of TiO2 and Fe2O3 on the halloysite surface in the case of halloysite-TiO2 and halloysite-Fe2O3 nanocomposites significantly increases photocatalytic activity of these materials in comparison to the commercial photocatalyst: TiO2, Fe2O3, and P25.


Nanomaterials ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 3076
Author(s):  
Maher Tlili ◽  
Chayma Nefzi ◽  
Badriyah Alhalaili ◽  
Chaker Bouzidi ◽  
Lassaad Ajili ◽  
...  

Magnesium oxide (MgO) thin films with different magnesium concentrations ([Mg2+] = 0.05, 0.1, 0.15 and 0.2 mol·L−1) in a spray solution have been successfully grown using a spray pyrolysis technique. X-ray diffraction (XRD), Maud software, FTIR spectroscopy, a confocal microscope, Wien2k software, spectrophotometry and a Photoluminescence spectrometer were used to investigate the structural, morphological and optical properties. XRD analysis revealed a better crystalline quality of the MgO thin layer synthesized with [Mg2+] = 0.15 mol·L−1, which crystallized into a face-centered cubic structure along the preferred orientation (200) lattice plan. The enhancement of the crystalline quality for the MgO thin film ([Mg2+] = 0.15 mol·L−1) was obtained, which was accompanied by an increment of 94.3 nm of the crystallite size. No secondary phase was detected and the purity phase of the MgO thin film was confirmed using Maud software. From the transmission spectra results, high transparent and antireflective properties of the MgO thin film were observed, with an average transmission value of about 91.48% in the visible range, which can be used as an optical window or buffer layer in solar cell applications. The films also have a high reflectance value in the IR range, which indicates that the highly reflective surface will prevent an increase in surface temperature under solar irradiation, which could be beneficial in solar cell applications. A direct band gap type was estimated using the Tauc relation which is close to the experimental value of 4.0 eV for optimal growth. The MgO material was tested for the degradation of methylene blue (MB), which reached a high photodegradation rate of about 83% after 180 min under sunlight illumination. These experimental trends open a new door for promising the removal of water contaminants for photocatalysis application.


2021 ◽  
Author(s):  
Ted Hullar ◽  
Theo Tran ◽  
Zekun Chen ◽  
Fernanda Bononi ◽  
Oliver Palmer ◽  
...  

Abstract. Photochemical reactions of contaminants in snow and ice can be important sources and sinks for various organic and inorganic compounds. Snow contaminants can be found in the bulk ice matrix, in internal liquid-like regions (LLRs), or in quasi-liquid layers (QLLs) at the air-ice interface, where they can readily exchange with the firn air. Some studies have reported that direct photochemical reactions occur faster in LLRs and QLLs than in aqueous solution, while others have found similar rates. Here, we measure the photodegradation rate constants of the three dimethoxybenzene isomers under varying experimental conditions, including in aqueous solution, in LLRs, and at the air-ice interface of nature-identical snow. Relative to aqueous solution, we find modest photodegradation enhancements (3- and 6-fold) in LLRs for two of the isomers, and larger enhancements (15- to 30-fold) at the air-ice interface for all three isomers. We use computational modeling to assess the impact of light absorbance changes on photodegradation rate enhancements at the interface. We find small (2–5 nm) bathochromic (red) absorbance shifts at the interface relative to in solution, which increases light absorption, but this factor only accounts for less than 50 % of the measured rate constant enhancements. The major factor responsible for photodegradation rate enhancements at the air-ice interface appears to be more efficient photodecay: estimated dimethoxybenzene quantum yields are 6- to 24-fold larger at the interface compared to in aqueous solution and account for the majority (51–96 %) of the observed enhancements. Using a hypothetical model compound with an assumed Gaussian-shaped absorbance peak, we find that a shift in the peak to higher or lower wavelengths can have a minor to substantial impact on photodecay rate constants, depending on the original location of the peak and the magnitude of the shift. Changes in other peak properties at the air-ice interface, such as peak width and height (i.e., molar absorptivity) can also impact rates of light absorption and direct photodecay.


Water ◽  
2021 ◽  
Vol 13 (18) ◽  
pp. 2603
Author(s):  
Efraím A. Serna-Galvis ◽  
Yudy L. Martínez-Mena ◽  
Jazmín Porras ◽  
Yenny Ávila-Torres ◽  
Javier Silva-Agredo ◽  
...  

Antibiotics elimination by some photochemical processes involves ferric ions, but little is discussed about the fundamental aspects of complexation effects on their degradation. This study compares the photodegradation of two fluoroquinolones, three β-lactams, and their ferric complexes in deionized water. The complexed antibiotics were more recalcitrant than the free antibiotics to the solar light action (the photodegradation rate constants diminished by more than 50%). To better study the photodegradation, other experiments considering two representative cases (ciprofloxacin and dicloxacillin) were performed. For ciprofloxacin, as the iron amount was increased from 0 to 7.5 µmol L−1, its photodegradation rate constant decreased from 0.017 to 0.004 min−1. In contrast, for dicloxacillin, the increase in iron concentration (from 0 to 7.5 µmol L−1) accelerated its photodegradation (the rate constant augmented from 0 to 0.0026 min−1). When UVC light was used, the degradations of free and complexed antibiotics were very close, exhibiting values of degradation rate constants between 0.030 and 0.085 min−1. The antimicrobial activity (AA) was eliminated when 90% of ciprofloxacin and 90–95% of dicloxacillin were degraded. The AA removal was associated with structural changes in relevant moieties of antibiotics, such as fluorine and piperazyl ring for ciprofloxacin, or β-lactam ring for dicloxacillin.


Materials ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 4888
Author(s):  
Justin Alfred Pe ◽  
Sung-Phil Mun ◽  
Min Lee

Fe–doped titanium dioxide–carbonized medium–density fiberboard (Fe/TiO2–cMDF) was evaluated for the photodegradation of methylene blue (MB) under a Blue (450 nm) light emitting diode (LED) module (6 W) and commercial LED (450 nm + 570 nm) bulbs (8 W, 12 W). Adsorption under daylight/dark conditions (three cycles each) and photodegradation (five cycles) were separately conducted. Photodegradation under Blue LED followed pseudo-second-order kinetics while photodegradation under commercial LED bulbs followed pseudo-first-order kinetics. Photodegradation rate constants were corrected by subtracting the adsorption rate constant except on the Blue LED experiment due to their difference in kinetics. For 8 W LED, the rate constants remained consistent at ~11.0 × 10−3/h. For 12 W LED, the rate constant for the first cycle was found to have the fastest photodegradation performance at 41.4 × 10−3/h. After the first cycle, the rate constants for the second to fifth cycle remained consistent at ~28.5 × 10−3/h. The energy supplied by Blue LED or commercial LEDs was sufficient for the bandgap energy requirement of Fe/TiO2–cMDF at 2.60 eV. Consequently, Fe/TiO2–cMDF was considered as a potential wood-based composite for the continuous treatment of dye wastewater under visible light.


2021 ◽  
Author(s):  
Kemal Bartu Aydın ◽  
Levent Aydin ◽  
Fethullah Güneş

TiO2 is one of the most common materials for photocatalytic applications due to its stability, affordability, and photoactive efficiency. However, it has some drawbacks, such as limited solar radiation response and quick recombination of excitons. Using graphene could be one of the methods to enhance the photocatalytic properties of TiO2. This study intends to optimize the photocatalytic performance of TiO2/Graphene (TiO2/G) nanocomposite by using neuro-regression analysis. In the analysis, the effect of some hydrothermal synthesis parameters, namely, amount of graphene oxide, ethanol/water ratio, and hydrothermal reaction time on the photocatalytic activity of TiO2/G nanocomposite, have been investigated. The parameters were determined from a literature study focused on overcoming the drawbacks of TiO2 by combining it with graphene oxide. Nelder-Mead, Simulated Annealing, Differential Evolution, and Random Search algorithms are used to obtain the optimum synthesis parameters for maximum photocatalytic activity in the optimization process. The results are indicated that all algorithms give the realizable value for design variables and photodegradation rate.


Nanomaterials ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 2123
Author(s):  
Yanbo Jiang ◽  
Kai Huang ◽  
Wei Ling ◽  
Xiandong Wei ◽  
Yijing Wang ◽  
...  

The rational design of direct Z-scheme heterostructural photocatalysts using solar energy is promising for energy conversion and environmental remediation, which depends on the precise regulation of redox active sites, rapid spatial separation and transport of photoexcited charge and a broad visible light response. The Bi2WO6 materials have been paid more and more attention because of their unique photochemical properties. In this study, S2− doped Bi2WO6-x coupled with twin crystal ZnIn2S4 nanosheets (Sov−BWO/T−ZIS) were prepared as an efficient photocatalyst by a simple hydrothermal method for the removal of tetracycline hydrochloride (TCH). Multiple methods (XRD, TEM, XPS, EPR, UV vis DRS, PL etc.) were employed to systematically investigate the morphology, structure, composition and photochemical properties of the as-prepared samples. The XRD spectrum indicated that the S2− ions were successfully doped into the Sov−BWO component. XPS spectra and photoelectrochemical analysis proved that S2− served as electronic bridge and promoted captured electrons of surface oxygen vacancies transfer to the valence band of T−ZIS. Through both experimental and in situ electron paramagnetic resonance (in situ EPR) characterizations, a defined direct Z-scheme heterojunction in S-BWO/T−ZIS was confirmed. The improved photocatalytic capability of S-BWO/T−ZIS results ascribed that broadened wavelength range of light absorption, rapid separation and interfacial transport of photoexcited charge, precisely regulated redox centers by optimizing the interfacial transport mode. Particularly, the Sov−50BWO/T−ZIS Z-scheme heterojunction exhibited the highest photodegradation rate was 95% under visible light irradiation. Moreover, this heterojunction exhibited a robust adsorption and degradation capacity, providing a promising photocatalyst for an organic pollutant synergistic removal strategy.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2634
Author(s):  
Kyeong-Han Na ◽  
Bo-Sung Kim ◽  
Han-Sol Yoon ◽  
Tae-Hyeob Song ◽  
Sung-Wook Kim ◽  
...  

For the removal of pollutants, a modified TiO2 photocatalyst is attracting attention. Fe-doped TiO2 nanofibers were prepared through a combination of electrospinning and calcination. Morphological characterization of the sample was conducted using field-emission scanning electron and transmission electron microscopy. The crystal structure of each sample was analyzed using high-resolution transmission electron microscopy, selected area electron diffraction, and Fast Fourier Transform imaging. The average diameter of the Fe-doped TiO2 nanofibers was measured to be 161.5 nm and that of the pure TiO2 nanofibers was 181.5 nm. The crystal phase when heat treated at 350 °C was anatase for TiO2 nanofibers and rutile for Fe-doped TiO2 nanofibers. The crystal phase of the TiO2 matrix was easily transitioned to rutile by Fe-doping. The photocatalytic performance of each sample was compared via the photodegradation of methylene blue and acid orange 7 under ultraviolet and visible light irradiation. In the Fe-doped TiO2 nanofibers, photodegradation rates of 38.3% and 27.9% were measured under UV irradiation and visible light, respectively. Although other catalysts were not activated, the photodegradation rate in the Fe-doped TiO2 nanofibers was 9.6% using acid orange 7 and visible light. For improved photocatalytic activity, it is necessary to study the concentration control of the Fe dopant.


Sign in / Sign up

Export Citation Format

Share Document