Comparative Stress Corrosion Behavior of Welded Austenitic Stainless Steel Pipe in High Temperature High Purity Oxygenated Water

CORROSION ◽  
1980 ◽  
Vol 36 (12) ◽  
pp. 686-698 ◽  
Author(s):  
J. N. KASS ◽  
J. C. LEMAIRE ◽  
R.B. DAVIS ◽  
J. E. ALEXANDER ◽  
J. C. DANKO
2013 ◽  
Vol 794 ◽  
pp. 507-513
Author(s):  
R.G. Rangasamy ◽  
Prabhat Kumar

Austenitic stainless steels are the major material of construction for the fast breeder reactors in view of their adequate high temperature mechanical properties, compatibility with liquid sodium coolant, good weldability, availability of design data and above all the fairly vast and satisfactory experience in the use of these steels for high temperature service. All the Nuclear Steam Supply System (NSSS) components of FBR are thin walled structure and require manufacture to very close tolerances under nuclear clean conditions. As a result of high temperature operation and thin wall construction, the acceptance criteria are stringent as compared to ASME Section III. The material of construction is Austenitic stainless steel 316 LN and 304 LN with controlled Chemistry and calls for additional tests and requirements as compared to ASTM standards. Prototype Fast Breeder Reactor (PFBR) is sodium cooled, pool type, 500 MWe reactor which is at advanced stage of construction at Kalpakkam, Tamilnadu, India. In PFBR, the normal heat transport is mainly through two secondary loops and in their absence; the decay heat removal is through four passive and independent safety grade decay heat removal loops (SGDHR). The secondary sodium circuit and the SGHDR circuit consist of sodium tanks for various applications such as storage, transfer, pressure mitigation and to take care of volumetric expansion. The sodium tanks are thin walled cylindrical vertical vessels with predominantly torispherical dished heads at the top and bottom. These tanks are provided with pull-out nozzles which were successfully made by cold forming. Surface thermocouples and heaters, wire type leak detectors are provided on these tanks. These tanks are insulated with bonded mineral wool and with aluminum cladding. All the butt welds in pressure parts were subjected to 100% Radiographic examination. These tanks were subjected to hydrotest, pneumatic test and helium leak test under vacuum. The principal material of construction being stainless steel for the sodium tanks shall be handled with care following best engineering practices coupled with stringent QA requirements to avoid stress corrosion cracking in the highly brackish environment. Intergranular stress corrosion cracking and hot cracking are additional factors to be addressed for the welding of stainless steel components. Pickling and passivation, Testing with chemistry controlled demineralised water are salient steps in manufacturing. Corrosion protection and preservation during fabrication, erection and post erection is a mandatory stipulation in the QA programme. Enhanced reliability of welded components can be achieved mainly through quality control and quality assurance procedures in addition to design and metallurgy. The diverse and redundant inspections in terms of both operator and technique are required for components where zero failure is desired & claimed. This paper highlights the step by step quality management methodologies adopted during the manufacturing of high temperature thin walled austenitic stainless steel sodium tanks of PFBR.


Author(s):  
Pauline Bouin ◽  
Antoine Fissolo ◽  
Ce´dric Gourdin

This paper covers work carried out by the French Atomic Energy Commission (CEA) to investigate on mechanisms leading to cracking of piping as a result of thermal loading existing in flow mixing zones. The main purpose of this work is to analyse, with a new experiment and its numerical interpretation, and to understand the mechanism of propagation of cracks in such components. To address this issue, a new specimen has been developed on the basis of the Fat3D experiment. This thermal fatigue test consists in heating a 304L steel pre-cracked tube while cyclically injecting ambient water onto its inner surface. The tube is regularly removed from the furnace for a crack characterisation. Finally, the crack growth is evaluated from the crack length differences between two stops. In parallel, a finite element analysis is developed using the finite element Cast3M code. A pipe with a semi-elliptical crack on its inner surface is modelled. A cyclic thermal loading is imposed on the tube. This loading is in agreement with experimental data. The crack propagates through the thickness. A prediction of the velocity of the crack is finally assessed using a Paris’ law type criteria. Finally, this combined experimental and numerical work on 304L austenitic stainless steel pipes will enable to improve existing methods to accurately predict the crack growth under cyclic thermal loadings in austenitic stainless steel pipe at the design stage.


Author(s):  
Harris Prabowo ◽  
Badrul Munir ◽  
Yudha Pratesa ◽  
Johny W. Soedarsono

The scarcity of oil and gas resources made High Pressure and High Temperature (HPHT) reservoir attractive to be developed. The sour service environment gives an additional factor in material selection for HPHT reservoir. Austenitic 28 Cr and super duplex stainless steel 2507 (SS 2507) are proposed to be a potential materials candidate for such conditions. C-ring tests were performed to investigate their corrosion behavior, specifically sulfide stress cracking (SSC) and sulfide stress cracking susceptibility. The C-ring tests were done under 2.55 % H2S (31.48 psia) and 50 % CO2 (617.25 psia). The testing was done in static environment conditions. Regardless of good SSC resistance for both materials, different pitting resistance is seen in both materials. The pitting resistance did not follow the general Pitting Resistance Equivalent Number (PREN), since SS 2507 super duplex (PREN > 40) has more pitting density than 28 Cr austenitic stainless steel (PREN < 40). SS 2507 super duplex pit shape tends to be larger but shallower than 28 Cr austenitic stainless steel. 28 Cr austenitic stainless steel has a smaller pit density, yet deeper and isolated.


Sign in / Sign up

Export Citation Format

Share Document