Wicking and Water Displacement by Corrosion Prevention Compounds in Simulated Aircraft Aluminum Alloy Lap Joints

CORROSION ◽  
2005 ◽  
Vol 61 (2) ◽  
pp. 155-166 ◽  
Author(s):  
K. R. Cooper ◽  
K. Furrow ◽  
R. G. Kelly
2014 ◽  
Vol 17 (6) ◽  
pp. 1563-1574 ◽  
Author(s):  
Farhad Gharavi ◽  
Khamirul Amin Matori ◽  
Robiah Yunus ◽  
Norinsan Kamil Othman

2010 ◽  
Vol 654-656 ◽  
pp. 596-601 ◽  
Author(s):  
Shinji Kumai ◽  
Mitsuhiro Watanabe ◽  
Keyan Feng

Both similar- and dissimilar metal joints, which are difficult to be welded by using ordinary fusion welding methods, were successfully obtained by using several advanced high-speed solid-state joining methods. (1) Al/Al, Cu/Cu, Al/Fe(Steel), Al/Cu, Al/Ni, Cu/Ni and Al/Bulk metallic glass lap joints were magnetic pulse welded by means of mutual high-speed oblique collision of metal sheets at a high speed of about 500m/s. (2) 2xxx aluminum alloy pins were stud-welded to 5xxx alloy aluminum sheets and several kinds of plated steel sheets at a high speed by using a specially designed discharge circuit. The welding was achieved within a few milliseconds without producing any weld marks on the back surface of the plate. (3) 6022 aluminum alloy sheets were friction stir spot welded to steel sheets and various kinds of galvanized and aluminum-plated steel sheets. The welding was achieved within a few seconds. For those joints, joint strength and characteristic joint interface morphology were investigated.


2019 ◽  
Author(s):  
Abdulnasser Embark Beleed ◽  
A. I. M. Shaiful ◽  
Muhamad Fahmi Mohd Roslan ◽  
M. N. B. Omar ◽  
Mazlan Mohamed

Materials ◽  
2005 ◽  
Author(s):  
M. A. Wahab ◽  
J. H. Park ◽  
S. S. Pang

Corrosion-Prevention-Compounds (CPC) are commonly used to prevent corrosion in the aircraft industry. The presence of corrosive environment on aircraft structures has detrimental effects on the aircraft components which reduces the fatigue life and may also accelerate the crack growth rate in the structures. This is an experimental study on 2024-T3 aluminum alloy to investigate the effect of fatigue crack growth (life from threshold crack growth to final failure) using CPC on fatigue life. The corrosion fatigue with the presence of water-vapor reduces the total fatigue life. The fatigue life with the CPC treatment is shown to increase the fatigue life due to the protection from the corrosive environment containing water-vapor. Test results are obtained for various stress ratios and frequencies with and without the CPC treatment under constant amplitude fatigue loading in water vapor. The second aspect of this work is to investigate the effect of periodic overloads and the limitation in their spacing cycles on the fatigue life under constant amplitude fatigue loading. The results confirm the earlier work that the fatigue life increases due to the periodic overloads in 2024-T3 aluminum alloy. The interactions between overloads that are controlled by the spacing cycles between overloads are also examined. From scanning electron microscopic work the transition from the ductile to brittle mode is observed clearly in this experimental work.


Sign in / Sign up

Export Citation Format

Share Document