scholarly journals Active Vibration Control Experiment on Automobile Using Active Vibration Absorber

Author(s):  
Dong-Ho Yang ◽  
Moon-K. Kwak ◽  
Jung-Hoon Kim ◽  
Woon-Hwan Park ◽  
Sang-Hoon Oh
Author(s):  
Shigeru Kougo ◽  
Hiroshi Fujihara ◽  
Katsuhiko Yoshida ◽  
Hiroyuki Tanaka ◽  
Toru Watanabe ◽  
...  

Abstract This paper deals with active vibration control of two identical flexible structures arranged in parallel. One of the authors had presented a vibration control mechanism so that two or more structures are connected via non-contact actuators in which one structure is utilized as a reaction wall for another structure’s control mutually. However, in such a mechanism, the control performance reduces as the natural frequencies of structures become closer. In this report, authors present a modified mechanism in which actuators are connected to the structures with long arms so that the direction of vibration in a mode differs on each structure. In this way, the reaction force from the actuator on structure is introduced to another structure for dissipative force even if the properties of structures are identical. Computer simulation and control experiment are carried out and the effectiveness of presented mechanism is confirmed.


1991 ◽  
Vol 57 (534) ◽  
pp. 472-477 ◽  
Author(s):  
Kazuo YOSHIDA ◽  
Tarou SHIMOGOU ◽  
Junji HASHIMOTO ◽  
Tetsuo SUZUKI ◽  
Mitsuru KAGEYAMA ◽  
...  

2014 ◽  
Vol 564 ◽  
pp. 143-148 ◽  
Author(s):  
Teng Sheng Su ◽  
Chen Far Hung ◽  
Shu Hua Chang ◽  
Ting Hao Wu ◽  
Luh Maan Chang

In this paper a new type of semi-active vibration absorber has been developed. The vibration absorber consists of mass block, cantilever beam, magnet lock system, vibration and distance sensors, controller and servo motor. The mass block is fixed on the tip of cantilever beam, and the control process is driven by a servo motor and a transmit gears. Portion of cantilever was cut in form of gear tracks, which can be driven by servo motor through transmit gear to regulate the length of the cantilever beam, and the natural frequency of absorber will also be regulated. After the mass locates in right position (i.e. the natural frequency of absorber is in assigned condition), the magnetic lock will clamp the cantilever beam. The design has the benefit of simplified control system, and extra unknown vibration modes will be averted. A fabrication prototype of the proposed semi-active vibration absorber is constructed and tested to demonstrate the application and modeling of the new cantilever beam damper. By performing the experimental work, the semi-active vibration control system is designed not only for reduce vibration level in resonant condition, but also considered for vibration attenuation in non-resonant conditions.


Sign in / Sign up

Export Citation Format

Share Document