scholarly journals Performance Evaluation of a Quarter Car Suspension System Installed with MR Damper Featuring Bypass Flow Holes in Piston

Author(s):  
Wan Ho Kim ◽  
Yong Hoon Hwang ◽  
Jhin Ha Park ◽  
Cheol-Soo Shin ◽  
Seung-Bok Choi
Author(s):  
D.V.A.R. Sastry ◽  
K.V. Ramana ◽  
N.M. Rao ◽  
P. Pruthvi ◽  
D.U.V. Santhosh

Magnetorheological (MR) dampers are evolving as one of the most promising devices for semi-active vibration control of various dynamic systems. In this paper, the suspension system of a car using MR damper is analysed for 2DOF quarter car and 4DOF half car models and then compared with corresponding suspension system using passive damper for ride comfort and handling. Magnetorheological damper is fabricated using a MR fluid of Carbonyl iron powder and Silicone oil added with additive. Experiments are conducted to establish the behaviour of the MR damper and are used to validate Spencer model for MR damper. Further, using the validated Spencer model of MR damper, the quarter car and half car models of Vehicle Suspension system are simulated by implementing a semi-active suspension system for analysing the resulting displacement and acceleration in the car body. The ride comfort and vehicle handling performance of each specific vehicle model with passive suspension system are compared with corresponding semi-active suspension system. The simulation and analysis are carried out using MATLAB/SIMULINK.


2016 ◽  
Vol 36 (1) ◽  
pp. 23-30 ◽  
Author(s):  
Mahesh Nagarkar ◽  
G. J. Vikhe Patil

<p>In this paper, a genetic algorithm (GA) based in an optimization approach is presented in order to search the optimum weighting matrix parameters of a linear quadratic regulator (LQR). A Macpherson strut quarter car suspension system is implemented for ride control application. Initially, the GA is implemented with the objective of minimizing root mean square (RMS) controller force. For single objective optimization, RMS controller force is reduced by 20.42% with slight increase in RMS sprung mass acceleration. Trade-off is observed between controller force and sprung mass acceleration. Further, an analysis is extended to multi-objective optimization with objectives such as minimization of RMS controller force and RMS sprung mass acceleration and minimization of RMS controller force, RMS sprung mass acceleration and suspension space deflection. For multi-objective optimization, Pareto-front gives flexibility in order to choose the optimum solution as per designer’s need.</p>


2017 ◽  
Vol 50 (1) ◽  
pp. 14519-14524 ◽  
Author(s):  
Sami Rajala ◽  
Tomi Roinila ◽  
Matti Vilkko ◽  
Oussama Ajala ◽  
Jochen Rauh

Author(s):  
Muhammad Adhar Bagus ◽  
Azizan As’arry ◽  
Hesham Ahmed Abdul Mutaleb Abas ◽  
Abdul Aziz Hairuddin ◽  
Mohd Khair Hassan

Recently MRF damper -which has a significant controllable damping force - used frequently in many active and semi-active suspension systems. However, MRF damper needs controller to estimate the desired force to dissipate the occurred vibration instantaneously. PID controller is one of the effective feedback controllers which shows robustness and simplicity in control MRF dampers, but still the parameters of the PID controller under study to find out the optimum values. This study focused on the vibration control using Magneto-rheological (MR) damper on a FSAE quarter car suspension test rig to study and obtain the optimum running condition. The test rig was designed, modified and then tested using a P-controller integrated with MR damper, unbalance mass used as disturbance and analyzed using LABVIEW software in time and frequency domains. The natural frequency obtained was 2.2 Hz were similar to the actual FSAE car natural frequency. Based on the acceleration against time graph with different proportional gain value the optimal value for proportional gain, Kp was 1. Hence, the experiment work could be used as the initial stage to study and develop a robust controller to suppress vibration on a car.


Sign in / Sign up

Export Citation Format

Share Document