scholarly journals Micro-positioning of a Smart Structure Using an Enhanced Stick-slip Model

2008 ◽  
Vol 56 ◽  
pp. 98-103 ◽  
Author(s):  
Min Gyu Jang ◽  
Chul Hee Lee ◽  
Seung Bok Choi

In this paper, a smart structure for the micro position control is proposed using the piezo stack actuator. The smart structure is comprised with PZT based stack actuator, mechanical displacement amplifier and positioning devices. Based on the bridge-type flexural hinge mechanism, a displacement amplifier is designed and integrated with a piezo stack actuator to produce a desirable positioning stroke of the device. In order to achieve the high precision control performance in a positioning device, a stick-slip phenomenon should be suppressed in contacting surfaces of the device, which is generally indispensable in the mechanically connected systems and particularly obvious for the micro-scale system. Therefore, the stick-slip model is enhanced by theoretically calculating the static friction based on the statistical rough surface contact model. Then, a PID feedback control algorithm with the developed stick-slip model is formulated for achieving accurate positioning of the device. Using the proposed smart structure, simulations of precise position control under the representative operating condition of positioning are conducted to demonstrate the stick-slip suppressing and micro positioning performance.


2008 ◽  
Vol 47-50 ◽  
pp. 246-249
Author(s):  
Min Gyu Jang ◽  
Chul Hee Lee ◽  
Seung Bok Choi

In this paper, a stick-slip compensation for the micro-positioning is presented using the statistical rough surface contact model. As for the micro-positioning structure, PZT (lead(Pb) zirconia(Zr) Titanate(Ti)) actuator is used to drive the load for precise positioning with its high resolution incorporating with the PID (Proportional Integral Derivative) control algorithm. Since the stick-slip characteristics for the micro structures are highly nonlinear and complicated, it is necessary to incorporate more detailed stick-slip model for the applications involving the high precision motion control. Thus, the elastic-plastic static friction model is used for the stick-slip compensation considering the elastic-plastic asperity contact in the rough surfaces statistically. Mathematical model of the system for the positioning apparatus was derived from the dynamic behaviors of structural parts. Since the conventional piezoelectric actuator generates the short stroke, a bridge-type flexural hinge mechanism is introduced to amplify the linear motion range. Using the proposed smart structure, simulations under the representative positioning motion were conducted to demonstrate the micro-positioning under the stick-slip friction.


2009 ◽  
Vol 407-408 ◽  
pp. 159-162
Author(s):  
Hua Wei Chen ◽  
Ichiro Hagiwara

One novel long-travel piezoelectric-driven linear micropositioning stage capable of moving in a stepping mode is developed. The stick-slip friction effect between flexure hinge actuation tips with a sliding stage is used to drive the stage step-by-step through an enlarged displacement of piezoelectric actuator. In order to enlarge the travel range, magnifying mechanism is optimally designed by use of flexure hinge and lever beam. Moreover, dynamic model of such stage is proposed by consideration of reset integrator stick-slip model. The simulation results show that the stage has considerable good dynamic properties.


Earthquake prediction is one of the most important probrems for countries on a plate margin with high seismic activity. The earthquake is a typical example of a common phenomena which has several kinds of fractal features. We introduce the ‘stick-slip model’, which can explain the fractal features of seismic phenomena to the earthquakes in Japan and discuss about the predictiblity of the destructive earthquakes.


2018 ◽  
Vol 11 (3) ◽  
pp. 417-430 ◽  
Author(s):  
Dennis Babu ◽  
Masashi Konyo ◽  
Hikaru Nagano ◽  
Satoshi Tadokoro

2011 ◽  
Vol 230-232 ◽  
pp. 1362-1366
Author(s):  
Nong Zhang ◽  
Jin Zhang ◽  
Yu Wang

In this paper, a simplified drive train model with stick-slip nonlinearity is introduced for the study of stick-slip motion between the driving tires and the flywheel. Laboratory based tests are designed to investigate stick-slip motion of the tires contacting with the flywheels which simulate vehicle inertia. A description of the powertrain test rig, the associated instrumentation, the test inputs and operation conditions are provided. The experimental results are similar to those obtained from the numerical analysis using the introduced drive train model. They verify the validity of the stick-slip model, and demonstrate that stick-slip occurred frequently between the driving tires and the flywheels. The normal tire force applied to the flywheel is one of the key parameters affecting stick-slip motion. And there exists an upper limit beyond which the tire and flywheel will stick together at all time. It is found that the frequency of stick-slip motion is independent of normal tire force and is close to the natural frequency of the tire-flywheel contacting power transmitting system.


Sign in / Sign up

Export Citation Format

Share Document