scholarly journals Chemistry of Ammonium Betaines: Application to Ion-Pair Catalysis for Selective Organic Transformations

2018 ◽  
Vol 76 (11) ◽  
pp. 1144-1153 ◽  
Author(s):  
Daisuke Uraguchi ◽  
Takashi Ooi
2021 ◽  
Author(s):  
Kori Sye ◽  
Clare Leahy ◽  
Josh Vura-Weis

Bridged μ-oxo iron bisporphyrins serve as photocatalysts for oxidative organic transformations, but suffer from low quantum efficiency. We use femtosecond optical and M2,3-edge XANES spectroscopy to investigate the early photodynamics of the μ-oxo iron bisporphyrin, (TPPFe)2O, providing evidence for the preferential formation of an TPPFe(III)+/TPPFe(III)-O- ion pair state instead of the desired TPPFe(II)/TPPFe(IV)=O.


2020 ◽  
pp. 8-12
Author(s):  
Alexandr V. Oborin ◽  
Anna Y. Villevalde ◽  
Sergey G. Trofimchuk

The results of development of the national primary standard of air kerma, air kerma rate, exposure, exposure rate and energy flux for X-rays and gamma radiation GET 8-2011 in 2019 are presented according to the recommendations of the ICRU Report No. 90 “Key Data for Ionizing-Radiation Dosimetry: Measurement Standards and Applications”. The following changes are made to the equations for the units determination with the standard: in the field of X-rays, new correction coefficients of the free-air ionization chambers are introduced and the relative standard uncertainty of the average energy to create an ion pair in air is changed; in the field of gamma radiation, the product of the average energy to create an ion pair in air and the electron stopping-power graphite to air ratio for the cavity ionization chambers is changed. More accurate values of the units reproduced by GET 8-2019 are obtained and new metrological characteristics of the standard are stated.


Author(s):  
RUAA MUAYAD MAHMOOD ◽  
HAMSA MUNAM YASSEN ◽  
SAMAR , NAJWA ISSAC ABDULLA AHMED DARWEESH ◽  
NAJWA ISSAC ABDULLA

Simple, rapid and sensitive extractive spectrophotometric method is presented for the determination of glibenclamide (Glb) based on the formation of ion-pair complex between the Glb and anionic dye, methyl orange (MO) at pH 4. The yellow colored complex formed was quantitatively extracted into dichloromethane and measured at 426 nm. The colored product obeyed Beer’s law in the concentration range of (0.5-40) μg.ml-1. The value of molar absorptivity obtained from Beer’s data was found to be 31122 L.mol-1.cm-1, Sandell’s sensitivity value was calculated to be 0.0159 μg.cm-2, while the limits of detection (LOD) and quantification (LOQ) were found to be 0.1086 and 0.3292 μg.ml-1, respectively. The stoichiometry of the complex created between the Glb and MO was 1:1 as determined via Job’s method of continuous variation and mole ratio method. The method was successfully applied for the analysis of pharmaceutical formulation.


2018 ◽  
Author(s):  
David Ascough ◽  
Fernanda Duarte ◽  
Robert Paton

The base-catalyzed rearrangement of arylindenols is a rare example of a suprafacial [1,3]-hydrogen atom transfer. The mechanism has been proposed to proceed via sequential [1,5]-sigmatropic shifts, which occur in a selective sense and avoid an achiral intermediate. A computational analysis using quantum chemistry casts serious doubt on these suggestions: these pathways have enormous activation barriers and in constrast to what is observed experimentally, they overwhelmingly favor a racemic product. Instead we propose that a suprafacial [1,3]-prototopic shift occurs in a two-step deprotonation/reprotonation sequence. This mechanism is favored by 15 kcal mol<sup>-1</sup> over that previously proposed. Most importantly, this is also consistent with stereospecificity since reprotonation occurs rapidly on the same p-face. We have used explicitly-solvated molecular dynamics studies to study the persistence and condensed-phase dynamics of the intermediate ion-pair formed in this reaction. Chirality transfer is the result of a particularly resilient contact ion-pair, held together by electrostatic attraction and a critical NH···p interaction which ensures that this species has an appreciable lifetime even in polar solvents such as DMSO and MeOH.


2019 ◽  
Author(s):  
Meifeng Wang ◽  
Gan Zhu ◽  
Yiqun Li ◽  
Liuqun Gu

Arylboronic acids were widely used as efficient catalysts in direct amide formation and other organic transformations. Surprisingly, reports on their use as catalysts in carbohydrates synthesis are very rare even though boron acid-diol complexation was extensively investigated in molecular recognition for saccharides and so on. Here we developed an efficient arylboronic acids catalyzed dimerization of glucosamines forming deoxyfructosazine which is important compound in pharmaceutical and food industries, against a commonly held belief that excess amount of phenyl boronic acid (or boric acid) is a must. A catalytic mechanism was also proposed and arylboronic acids instead of their boronates was identified as catalysts.


Sign in / Sign up

Export Citation Format

Share Document