Genetic variation and dispersal patterns in three varieties of Pinus caribaea (Pinaceae) in the Caribbean Basin

2018 ◽  
Vol 151 (1) ◽  
pp. 61-76
Author(s):  
Virginia Rebolledo Camacho ◽  
Lev Jardón Barbolla ◽  
Ivón Ramírez Morillo ◽  
Alejandra Vázquez-Lobo ◽  
Daniel Piñero ◽  
...  

Background – Pinus caribaea Morelet comprises three varieties of tropical pines distributed in the Caribbean Basin: P. caribaea var. hondurensis, var. caribaea, and var. bahamensis. The insular and continental distribution of these varieties, as well as the geological processes in the region, have been important factors for analysing evolutionary processes implicated in the diversification of these lineages. In this study, we evaluate the genetic and geographic structure within and between these three varieties in order to infer the possible origin and dispersal routes of these taxa.Methods – We used six polymorphic nuclear microsatellites (nSSR) in fifteen representative populations of the three pine varieties, sampled throughout their natural range in Central America, Cuba and the Bahamas islands.Results – The varieties contain similar levels of genetic variation (mean He = 0.571), with several populations out of Hardy-Weinberg equilibrium, and significant levels of inbreeding (0.097–0.184, P ≤ 0.05). A slight but significant genetic differentiation was found between the varieties (RST = 0.088) and populations (RST= 0.082), and genetic differentiation increased with geographic distance (r2 = 0.263). Distance and Bayesian BAPS analyses generated seven groups; two represented by the two island varieties and the remainder by the Central American populations of var. hondurensis. Migration rate estimates between pairs of groups ranged from M = 0.47 to M = 20.16. Estimates were generally higher from the continent to islands, with the highest migration rate estimated from a continental genetic group to the Cuba island group of var. hondurensis (M = 20.16).Conclusions – This study supports the hypothesis of a recent origin of these pine taxa through the migration of an ancestor from Central America, where the historical demography is associated with events of colonization, expansion and contraction of populations. The genetic variation and differentiation suggest that the three varieties are divergent lineages that currently share allelic variants, indicating that their speciation has not yet completed.

2020 ◽  
Vol 55 (7-8) ◽  
pp. 1809-1828
Author(s):  
Isabelle Gouirand ◽  
Vincent Moron ◽  
Bernd Sing

2003 ◽  
Vol 75 (1) ◽  
pp. 39-54 ◽  
Author(s):  
W. RONALD HEYER ◽  
YANA R. REID

The frog Leptodactylus fuscus is found throughout much of South America in open and disturbed habitats. Previous study of genetic differentiation in L. fuscus demonstrated that there was lack of genetic exchange among population units consistent with multiple species, rather than a single species. We examine advertisement vocalizations of L. fuscus to determine whether call variation coincides with genetic differentiation. Calls were analyzed for 32 individual frogs from 25 localities throughout the distributional range of L. fuscus. Although there is variation in calls among geographic samples, call variation is not concordant with genetic variation or geographic distance and the call variation observed is less than that typically found among other closely related species of Leptodactylus. This study is an example of the rare pattern of strong genetic differentiation unaccompanied by salient differences in advertisement calls. The relative infrequency of this pattern as currently understood may only reflect the lack of detailed analyses of genetic and acoustic differentiation within population systems currently understood as single species with substantial geographic distributions.


2015 ◽  
Vol 73 (7) ◽  
pp. 1925-1934 ◽  
Author(s):  
Catarina N. S. Silva ◽  
Jonathan P. A. Gardner

Abstract Understanding the processes responsible for shaping the spatial genetic patterns of species is critical for predicting evolutionary dynamics and defining significant evolutionary and/or management units. Here, we investigated the potential role of environmental factors in shaping the genetic structure of the endemic New Zealand scallop Pecten novaezelandiae using a seascape genetics approach. For this, we assayed genetic variation at 12 microsatellite markers in 952 individuals collected from 14 sites throughout New Zealand, and used data for 9 site-specific environmental variables (3 geospatial and 6 environmental variables). Our results indicate that a combination of environmental factors may be contributing to the observed patterns of genetic differentiation, but in particular, freshwater discharge and suspended particulate matter concentration were identified as being important. Environmental variation in these parameters may be acting as a barrier to gene flow. In terms of their ecophysiology, scallops are not particularly tolerant of high concentrations of either freshwater input or suspended sediment, making the identification of an association between these environmental variables and genetic variation particularly relevant across the full distributional range of this species. Although geographic distance between populations was also an important variable explaining the genetic variation among populations, it appears that levels of genetic differentiation are not a simple function of interpopulation distance. This study has identified previously unknown environmental factors that may be acting on the genetic structure of the New Zealand scallop and highlights the utility of seascape genetic studies to better understand the processes shaping the genetic structure of organisms.


1995 ◽  
Vol 29 (1) ◽  
pp. 268
Author(s):  
Mary Elizabeth Brown ◽  
S. Diaz-Briquets ◽  
S. Weintraub ◽  
A. P. Maingot

Sign in / Sign up

Export Citation Format

Share Document