scholarly journals 2G3-8 Influence of plantar stimulation on center of gravity sway and the leg muscle activity during standing

2019 ◽  
Vol 55 (Supplement) ◽  
pp. 2G3-8-2G3-8
Author(s):  
Yuki TAKEMOTO ◽  
Takatoshi HOSAKA ◽  
Seiji SAITO ◽  
Hiroshi FURUTACHI ◽  
Hajime MOCHIDA ◽  
...  
2020 ◽  
Vol 28 (6) ◽  
pp. 675-684 ◽  
Author(s):  
Shahul Mujib Kamal ◽  
Norazryana Binti Mat Dawi ◽  
Sue Sim ◽  
Rui Tee ◽  
Visvamba Nathan ◽  
...  

BACKGROUND: Walking is one of the important actions of the human body. For this purpose, the human brain communicates with leg muscles through the nervous system. Based on the walking path, leg muscles act differently. Therefore, there should be a relation between the activity of leg muscles and the path of movement. OBJECTIVE: In order to address this issue, we analyzed how leg muscle activity is related to the variations of the path of movement. METHOD: Since the electromyography (EMG) signal is a feature of muscle activity and the movement path has complex structures, we used entropy analysis in order to link their structures. The Shannon entropy of EMG signal and walking path are computed to relate their information content. RESULTS: Based on the obtained results, walking on a path with greater information content causes greater information content in the EMG signal which is supported by statistical analysis results. This allowed us to analyze the relation between muscle activity and walking path. CONCLUSION: The method of analysis employed in this research can be applied to investigate the relation between brain or heart reactions and walking path.


2005 ◽  
Vol 94 (5) ◽  
pp. 3143-3158 ◽  
Author(s):  
C. Grüneberg ◽  
J. Duysens ◽  
F. Honegger ◽  
J.H.J. Allum

This study was designed to provide evidence for the hypothesis that human balance corrections in response to pitch perturbations are controlled by muscle action mainly about the ankle and knee joints, whereas balance corrections for roll perturbations are controlled predominantly by motion about the hip and lumbro-sacral joints. A dual-axis rotating support surface delivered unexpected random perturbations to the stance of 19 healthy young adults through eight different directions in the pitch and the roll planes and three delays between pitch and roll directions. Roll delays with respect to pitch were no delay, a short 50-ms delay of roll with respect to pitch movements, (chosen to correspond to the onset time of leg muscle stretch reflexes), and a long 150-ms delay between roll and pitch movements (chosen to shift the time when trunk roll velocity peaks to the time when trunk peak pitch velocity normally occurs). Delays of stimulus roll with respect to pitch resulted in delayed roll responses of the legs, trunk, arms, and head consistent with stimulus delay without any changes in roll velocity amplitude. Delayed roll perturbations induced only small changes in the pitch motion of the legs and trunk; however, major changes were seen in the time when roll motion of the trunk was arrested. Amplitudes and directional sensitivity of short-latency (SL) stretch reflexes in ankle muscles were not altered with increasing roll delay. Small changes to balance correcting responses in ankle muscles were observed. SL stretch reflexes in hip and trunk muscles were delayed, and balance-correcting responses in trunk muscles became split into two distinct responses with delayed roll. The first of these responses was small and had a directional responsiveness aligned more along the pitch plane. The main, larger, response occurred with an onset and time-to-peak consistent with the delay in trunk roll displacement and its directional responsiveness was roll oriented. The sum of the amplitudes of these two types of balance-correcting responses remained constant with roll delay. These results support the hypothesis that corrections of the body's pitch and roll motion are programmed separately by neural command signals and provide insights into possible triggering mechanisms. The evidence that lower leg muscle balance-correcting activity is hardly changed by delayed trunk roll also indicates that lower leg muscle activity is not predominant in correcting roll motion of the body. Lower leg and trunk muscle activity appears to have a dual action in balance corrections. In trunk muscles the main action is to correct for roll perturbations and the lesser action may be an anticipatory stabilizing reaction for pitch perturbations. Likewise, the small changes in lower leg muscle activity may result from a generalized stabilizing reaction to roll perturbations, but the main action is to correct for pitch perturbations.


2020 ◽  
Vol 10 (11) ◽  
pp. 2754-2763
Author(s):  
Sunhye Shin ◽  
Chul Un Hong ◽  
Kyong Kim ◽  
Tae Kyu Kwon

Research regarding the cerebral cortex and muscle activity patterns of the body used for postural balance control when sudden instability stimuli occur is lacking. This study analyzed individuals' physiological signals when direction-specific instability stimuli were applied while their eyes were closed. Healthy adults in their 20s maintained their postural balance while looking at the center of gravity provided by a monitor with a three-dimensional dynamic postural balance training system. We performed electroencephalography (EEG) and measured trunk and lower extremity muscle activity of participants with their eyes closed when subjected to four direction-specific instability stimuli (anterior, posterior, left, and right). EEG results showed that gamma waves increased significantly with an unbalanced stimulus when the participant's eyes were open and closed. The increased gamma wave rate with eyes closed was low in the exercise planning area, where information is relatively integrated and exercise is planned without visual information. EMG results showed fewer gamma waves on EEG due to the low focus on postural control because participants could not observe the center of gravity, which is the basis for balance. The trunk and lower extremity muscles tended to be used more due to the larger body perturbation angle. These outcomes can be used as basic data regarding how the human brain and muscles maintain postural balance when an unexpected external instability stimulus occurs. Quantitative postural balance rehabilitation training protocols for the elderly and those with disabilities can be created based on these outcomes.


Sign in / Sign up

Export Citation Format

Share Document