scholarly journals Path Planning of an Autonomous Mobile Robot using Directed Artificial Bee Colony Algorithm

2014 ◽  
Vol 96 (11) ◽  
pp. 11-16 ◽  
Author(s):  
Nizar HadiAbbas ◽  
Farah Mahdi Ali
2020 ◽  
Vol 38 (9A) ◽  
pp. 1384-1395
Author(s):  
Rakaa T. Kamil ◽  
Mohamed J. Mohamed ◽  
Bashra K. Oleiwi

A modified version of the artificial Bee Colony Algorithm (ABC) was suggested namely Adaptive Dimension Limit- Artificial Bee Colony Algorithm (ADL-ABC). To determine the optimum global path for mobile robot that satisfies the chosen criteria for shortest distance and collision–free with circular shaped static obstacles on robot environment. The cubic polynomial connects the start point to the end point through three via points used, so the generated paths are smooth and achievable by the robot. Two case studies (or scenarios) are presented in this task and comparative research (or study) is adopted between two algorithm’s results in order to evaluate the performance of the suggested algorithm. The results of the simulation showed that modified parameter (dynamic control limit) is avoiding static number of limit which excludes unnecessary Iteration, so it can find solution with minimum number of iterations and less computational time. From tables of result if there is an equal distance along the path such as in case A (14.490, 14.459) unit, there will be a reduction in time approximately to halve at percentage 5%.


2015 ◽  
Vol 2015 ◽  
pp. 1-14 ◽  
Author(s):  
Jun-Hao Liang ◽  
Ching-Hung Lee

This paper presents a modified artificial bee colony algorithm (MABC) for solving function optimization problems and control of mobile robot system. Several strategies are adopted to enhance the performance and reduce the computational effort of traditional artificial bee colony algorithm, such as elite, solution sharing, instant update, cooperative strategy, and population manager. The elite individuals are selected as onlooker bees for preserving good evolution, and, then, onlooker bees, employed bees, and scout bees are operated. The solution sharing strategy provides a proper direction for searching, and the instant update strategy provides the newest information for other individuals; the cooperative strategy improves the performance for high-dimensional problems. In addition, the population manager is proposed to adjust population size adaptively according to the evolution situation. Finally, simulation results for optimization of test functions and tracking control of mobile robot system are introduced to show the effectiveness and performance of the proposed approach.


2020 ◽  
Vol 17 (1) ◽  
pp. 172988141989478 ◽  
Author(s):  
Zhaoying Li ◽  
Zhao Zhang ◽  
Hao Liu ◽  
Liang Yang

Free space algorithms are kind of graphics-based methods for path planning. With previously known map information, graphics-based methods have high computational efficiency in providing a feasible path. However, the existing free space algorithms do not guarantee the global optimality because they always search in one connected domain but not all the possible connected domains. To overcome this drawback, this article presents an improved free space algorithm based on map decomposition with multiple connected domains and artificial bee colony algorithm. First, a decomposition algorithm of single-connected concave polygon is introduced based on the principle of concave polygon convex decomposition. Any map without obstacle is taken as single-connected concave polygon (the convex polygon map can be seen as already decomposed and will not be discussed here). Single concave polygon can be decomposed into convex polygons by connecting concave points with their visible vertex. Second, decomposition algorithm for multi-connected concave polygon (any map with obstacles) is designed. It can be converted into single-connected concave polygon by excluding obstacles using virtual links. The map can be decomposed into several convex polygons which form multiple connected domains. Third, artificial bee colony algorithm is used to search the optimal path in all the connected domains so as to avoid falling into the local minimum. Numerical simulations and comparisons with existing free space algorithm and rapidly exploring random tree star algorithm are carried out to evaluate the performance of the proposed method. The results show that this method is able to find the optimal path with high computational efficiency and accuracy. It has advantages especially for complex maps. Furthermore, parameter sensitivity analysis is provided and the suggested values for parameters are given.


Sign in / Sign up

Export Citation Format

Share Document