scholarly journals Distribution of sensitivity along the area of FPA pixel, limited by the diffraction limit of the scanning mask

2021 ◽  
pp. 44-52
Author(s):  
Aleksei Lopukhin ◽  
Konstantin Boltar ◽  
Vladimir Akimov ◽  
Maksim Arbuzov

Consideration is given to the distribution of sensitivity along the area of indium antimonide FPA pixel obtained with the aid of the nondestructive method of the scanning mask on the basis of the fast testing open probe installation.

Author(s):  
J. Barbillat ◽  
M. Delhaye ◽  
P. Dhamelincourt

Raman mapping, with a spatial resolution close to the diffraction limit, can help to reveal the distribution of chemical species at the surface of an heterogeneous sample.As early as 1975,three methods of sample laser illumination and detector configuration have been proposed to perform Raman mapping at the microscopic level (Fig. 1),:- Point illumination:The basic design of the instrument is a classical Raman microprobe equipped with a PM tube or either a linear photodiode array or a two-dimensional CCD detector. A laser beam is focused on a very small area ,close to the diffraction limit.In order to explore the whole surface of the sample,the specimen is moved sequentially beneath the microscope by means of a motorized XY stage. For each point analyzed, a complete spectrum is obtained from which spectral information of interest is extracted for Raman image reconstruction.- Line illuminationA narrow laser line is focused onto the sample either by a cylindrical lens or by a scanning device and is optically conjugated with the entrance slit of the stigmatic spectrograph.


2018 ◽  
Vol 1 (1) ◽  
pp. 78-94
Author(s):  
I. A. Obukhov ◽  
◽  
G. G. Gorokh ◽  
A. A. Lozovenko ◽  
E. A. Smirnova ◽  
...  
Keyword(s):  

2015 ◽  
Vol 9 (1) ◽  
pp. 170-174 ◽  
Author(s):  
Xiaoling Zhang ◽  
Qingduan Meng ◽  
Liwen Zhang

The square checkerboard buckling deformation appearing in indium antimonide infrared focal-plane arrays (InSb IRFPAs) subjected to the thermal shock tests, results in the fracturing of the InSb chip, which restricts its final yield. In light of the proposed three-dimensional modeling, we proposed the method of thinning a silicon readout integrated circuit (ROIC) to level the uneven top surface of InSb IRFPAs. Simulation results show that when the silicon ROIC is thinned from 300 μm to 20 μm, the maximal displacement in the InSb IRFPAs linearly decreases from 7.115 μm to 0.670 μm in the upward direction, and also decreases linearly from 14.013 μm to 1.612 μm in the downward direction. Once the thickness of the silicon ROIC is less than 50 μm, the square checkerboard buckling deformation distribution presenting in the thicker InSb IRFPAs disappears, and the top surface of the InSb IRFPAs becomes flat. All these findings imply that the thickness of the silicon ROIC determines the degree of deformation in the InSb IRFPAs under a thermal shock test, that the method of thinning a silicon ROIC is suitable for decreasing the fracture probability of the InSb chip, and that this approach improves the reliability of InSb IRFPAs.


2019 ◽  
Vol 59 ◽  
pp. 56-65
Author(s):  
Shiwei Ye ◽  
Satoru Takahashi ◽  
Masaki Michihata ◽  
Kiyoshi Takamasu ◽  
Hans Nørgaard Hansen ◽  
...  

Author(s):  
Yian Wang ◽  
Guoshan Xie ◽  
Zheng Zhang ◽  
Xiaolong Qian ◽  
Yufeng Zhou ◽  
...  

Temper embrittlement is a common damage mechanism of pressure vessels in the chemical and petrochemical industry serviced in high temperature, which results in the reduction of roughness due to metallurgical change in some low alloy steels. Pressure vessels that are temper embrittled may be susceptible to brittle fracture under certain operating conditions which cause high stress by thermal gradients, e.g., during start-up and shutdown. 2.25Cr1-Mo steel is widely used to make hydrogenation reactor due to its superior combination of high mechanical strength, good weldability, excellent high temperature hydrogen attack (HTHA) and oxidation-resistance. However, 2.25Cr-1Mo steel is particularly susceptible to temper embrittlement. In this paper, the effect of carbide on temper embrittlement of 2.25Cr-1Mo steel was investigated. Mechanical properties and the ductile-brittle transition temperature (DBTT) of 2.25Cr-1Mo steel were measured by tensile test and impact test. The tests were performed at two positions (base metal and weld metal) and three states (original, step cooling treated and in-service for a hundred thousand hours). The content and distribution of carbides were analyzed by scanning electron microscope (SEM). The content of Cr and Mo elements in carbide was measured by energy dispersive X-ray analysis (EDS). The results showed that the embrittlement could increase the strength and reduce the plasticity. Higher carbide contents appear to be responsible for the higher DBTT. The in-service 2.25Cr-1Mo steel showed the highest DBTT and carbide content, followed by step cooling treated 2.25Cr-1Mo steel, while the as-received 2.25Cr-1Mo steel has the minimum DBTT and carbide content. At the same time, the Cr and Mo contents in carbide increased with the increasing of DBTT. It is well known that the specimen analyzed by SEM is very small in size, sampling SEM specimen is convenient and nondestructive to pressure vessel. Therefore, the relationship between DBTT and the content of carbide offers a feasible nondestructive method for quantitative measuring the temper embrittlement of 2.25Cr-1Mo steel pressure vessel.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ali Abdolali ◽  
Hooman Barati Sedeh ◽  
Mohammad Hosein Fakheri ◽  
Chen Shen ◽  
Fei Sun

AbstractBased on the transformation acoustics methodology, the design principle for achieving an arbitrary shape magnifying lens (ASML) is proposed. Contrary to the previous works, the presented ASML is competent of realizing far-field high resolution images and breaking the diffraction limit, regardless of the position of the utilized sources. Therefore, objects locating within the designed ASML can be properly resolved in the far-field region. It is shown that the obtained material through the theoretical investigations becomes an acoustic null medium (ANM), which has recently gained a significant attention. Besides the homogeneity of ANM, which makes it an implementable material, it is also independent of the perturbation in the geometry of the lens, in such a way that the same ANM can be used for different structural topologies. The obtained ANM has been implemented via acoustics unit cells formed by membranes and side branches with open ends and then was utilized to realize an ASML with the aid of effective medium theory. It is shown that the far-field results of an ideal ASML abide well with the results of the implemented sample, validating the proposed design principle. The presented acoustic magnifying lens has a wide spectrum of possible applications ranging from medical imaging, and biomedical sensors to focused ultrasound surgery.


Sign in / Sign up

Export Citation Format

Share Document