scholarly journals Design Space Exploration of the Hall Effect Thruster for Conceptual Design

2011 ◽  
Vol 39 (12) ◽  
pp. 1133-1140
Author(s):  
Ky-Beom Kwon
Author(s):  
Xin Zhao ◽  
Smruti Sahoo ◽  
Konstantinos Kyprianidis ◽  
Sharmila Sumsurooah ◽  
Giorgio Valente ◽  
...  

Abstract To achieve the goals of substantial improvements in efficiency and emissions set by Flightpath 2050, fundamentally different concepts are required. As one of the most promising solutions, electrification of the aircraft primary propulsion is currently a prime focus of research and development. Unconventional propulsion sub-systems, mainly the electrical power system, associated thermal management system and transmission system, provide a variety of options for integration in the existing propulsion systems. Different combinations of the gas turbine and the unconventional propulsion sub-systems introduce different configurations and operation control strategies. The trade-off between the use of the two energy sources, jet fuel and electrical energy, is primarily a result of the trade-offs between efficiencies and sizing characteristics of these sub-systems. The aircraft structure and performance are the final carrier of these trade-offs. Hence, full design space exploration of various hybrid derivatives requires global investigation of the entire aircraft considering these key propulsion sub-systems and the aircraft structure and performance, as well as their interactions. This paper presents a recent contribution of the development for a physics-based simulation and optimization platform for hybrid electric aircraft conceptual design. Modeling of each subsystem and the aircraft structure are described as well as the aircraft performance modeling and integration technique. With a focus on the key propulsion sub-systems, aircraft structure and performance that interfaces with existing conceptual design frameworks, this platform aims at full design space exploration of various hybrid concepts at a low TRL level.


Author(s):  
Matthew A. Prior ◽  
Ian C. Stults ◽  
Matthew J. Daskilewicz ◽  
Scott J. Duncan ◽  
Brian J. German ◽  
...  

The demand for greater efficiency, lower emissions, and higher reliability in combined cycle power plants has driven industry to use higher-fidelity plant component models in conceptual design. Normally used later in preliminary component design, physics-based models can also be used in conceptual design as the building blocks of a plant-level modeling and simulation (M&S) environment. Although better designs can be discovered using such environments, the linking of multiple high-fidelity models can create intractably large design variable sets, long overall execution times, and model convergence limitations. As a result, an M&S environment comprising multiple linked high-fidelity models can be prohibitively large and/or slow to evaluate, discouraging design optimization and design space exploration. This paper describes a design space exploration methodology that addresses the aforementioned challenges. Specifically, the proposed methodology includes techniques for the reduction of total model run-time, reduction of design space dimensionality, effect visualization, and identification of Pareto-optimal power plant designs. An overview of the methodology’s main steps is given, leading to a description of the benefit and implementation of each step. Major steps in the process include design variable screening, efficient design space sampling, and surrogate modeling, all of which can be used as precursors to traditional optimization techniques. As an alternative to optimization, a Monte Carlo based method for design space exploration is explained conceptually. Selected steps from the methodology are applied to a fictional but representative example problem of combined cycle power plant design. The objective is to minimize cost of electricity (COE), subject to constraints on base load power and acquisition cost. This example problem is used to show relative run-time savings from using the methodology’s techniques compared to the alternative of performing optimization without them. The example additionally provides a context for explaining design space visualization techniques that are part of the methodology.


Author(s):  
Shane K. Curtis ◽  
Braden J. Hancock ◽  
Christopher A. Mattson

In a recent publication, we presented a new strategy for engineering design and optimization, which we termed formulation space exploration. The formulation space for an optimization problem is the union of all variable and design objective spaces identified by the designer as being valid and pragmatic problem formulations. By extending a computational search into this new space, the solution to any optimization problem is no longer predefined by the optimization problem formulation. This method allows a designer to both diverge the design space during conceptual design and converge onto a solution as more information about the design objectives and constraints becomes available. Additionally, we introduced a new way to formulate multiobjective optimization problems, allowing the designer to change and update design objectives, constraints, and variables in a simple, fluid manner that promotes exploration. In this paper, we investigate three use scenarios where formulation space exploration can be utilized in the early stages of design when it is possible to make the greatest contributions to development projects. Specifically, we look at s-Pareto frontier generation in the formulation space, formulation space boundary exploration, and a new way to perform inverse optimization. The benefits of these methods are illustrated with the conceptual design of an impact driver.


Author(s):  
Adrian G. Caburnay ◽  
Jonathan Gabriel S.A. Reyes ◽  
Anastacia P. Ballesil-Alvarez ◽  
Maria Theresa G. de Leon ◽  
John Richard E. Hizon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document