hall effect thruster
Recently Published Documents


TOTAL DOCUMENTS

176
(FIVE YEARS 36)

H-INDEX

15
(FIVE YEARS 4)

Author(s):  
Timofey Chernyshev ◽  
Dariya Krivoruchko

Abstract The cathode plasma is a specific transition region in the Hall Effect Thruster (HET) discharge that localizes between the strongly magnetized acceleration layer (magnetic layer or B-layer) and non-magnetized exhaust plume. Cathode plasma provides a flow of electron current that supplies losses in the magnetic layer (due to ionization, excitation, electron-wall interactions, etc.). The electrons' transport in this region occurs in collisionless mode through the excitation of plasma instabilities. This effect is also known as "anomalous transport/conductivity". In this work, we present the results of a 2d (drift-plane) kinetic simulation of the HET discharge, including the outside region that contains cathode plasma. We discuss the process of cathode plasma formation and the mechanisms of "anomalous transport" inside it. We also analyze how fluid force balance emerges from collisionless kinetic approach. The acceleration mechanism in Hall Effect Thrusters (HETs) is commonly described in terms of force balance. Namely, the reactive force produced by accelerated ions has the same value as Ampère's force acting on a drift current loop. This balance written in integral form provides the basis for quantitative estimations of HETs' parameters and scaling models.


Aerospace ◽  
2021 ◽  
Vol 8 (8) ◽  
pp. 227
Author(s):  
Ethan P. Hopping ◽  
Wensheng Huang ◽  
Kunning G. Xu

This paper presents the design and performance of the UAH-78AM, a low-power small Hall effect thruster. The goal of this work is to assess the feasibility of using low-cost 3D printing to create functioning Hall thrusters, and study how 3D printing can expand the design space. The thruster features a 3D printed discharge channel with embedded propellant distributor. Multiple materials were tested including ABS, ULTEM, and glazed ceramic. Thrust measurements were obtained at the NASA Glenn Research Center. Measured thrust ranged from 17.2–30.4 mN over a discharge power of 280 W to 520 W with an anode ISP range of 870–1450 s. The thruster has a similar performance range to conventional thrusters at the same power levels. However, the polymer ABS and ULTEM materials have low temperature limits which made sustained operation difficult.


Author(s):  
Mario Panelli ◽  
Francesco B. Battista ◽  
Antonio Smoraldi ◽  
Manrico Fragiacomo

2021 ◽  
Vol 136 (7) ◽  
Author(s):  
A. Szelecka ◽  
M. Jakubczak ◽  
A. Riazantsev ◽  
J. Kurzyna

AbstractA prototype of krypton Hall-effect thruster (HET) of 0.5 kW nominal power and a dedicated diagnostic system for ion current collection were designed in the laboratory of plasma space propulsion (PlaNS) of the Institute of Plasma Physics and Laser Microfusion (IPPLM) in Warsaw. The diagnostic system consisting of a collimated Faraday Cup (FC) and a Planar Probe with Guarding Ring, named also Faraday Probe (FP) was intended to capture both temporal and spatial ion current variation, allowing to analyze not only ion current dynamics locally but also to estimate the total ion current value and a plasma jet divergence. Reliable engine operation provided by stability of plasma in a discharge channel of the thruster is unambiguously reflected in the oscillations of the discharge current. The so-called breathing mode, categorized as ionization instability with frequencies in the range of 10–30 kHz, is commonly recognized in the HET’s discharge current. Rising of instabilities makes it difficult to increase the specific impulse effectively by just simply attempting to operate thruster in high-voltage regime because it may result in very irregular thruster functioning and often to ceasing of plasma. Discharge current oscillations should also be strongly reflected in the ion current. Indeed, a similar to discharge current behavior was observed in the recorded FC and FP ion current signals. By changing thruster operating conditions, like discharge voltage and magnitude of B-field, transitions between smooth and oscillating current regimes were examined. Studying the ion current dynamics seems particularly important, since it is predicted that the control of discharge instabilities may be crucial to improve the performance of HETs in the future.


Sign in / Sign up

Export Citation Format

Share Document