scholarly journals Initial Sizing of General Aviation Aircraft Propelled by Electric Propulsion system

Author(s):  
Hye-Sun Han ◽  
Kyo-Sic Shin ◽  
Hong-Ju Park ◽  
Ho-Yon Hwang ◽  
Taewoo Nam
Aerospace ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 105 ◽  
Author(s):  
Emma Frosina ◽  
Adolfo Senatore ◽  
Luka Palumbo ◽  
Giuseppe Di Lorenzo ◽  
Ciro Pascarella

This paper describes a case study for applying a hybrid electric propulsion system for general aviation aircraft. The work was performed by a joint team from the Centro Italiano Ricerche Aerospaziali (CIRA) and the Department of Industrial Engineering of the University of Naples Federico II. The use of electric and hybrid electric propulsion for aircraft has gained widespread and significant attention over the past decade. The driver of industry interest has principally been the need to reduce the emissions of combustion engine exhaust products and noise; however, studies have revealed the potential for overall improvement in the energy efficiency and mission flexibility of new aircraft types. The goal of the present study was to demonstrate the feasibility of aeronautic parallel hybrid electric propulsion for light aircraft, varying mission profiles and electric configurations. Through the creation and application of a global model with AMESim® software, in which every aspect of the components chosen by the industrial partners can be represented, some interesting studies were carried out. The numerical model used was more complete and more accurate compared to some others available in the literature. In particular, it was confirmed that, for particular missions, integrating state-of-the-art technologies provides notable advantages for aircraft hybrid electric propulsion for light aircraft.


Author(s):  
Emma Frosina ◽  
Adolfo Senatore ◽  
Luca Palumbo ◽  
Giuseppe Di Lorenzo ◽  
Ciro Pascarella

This paper describes a case study for applying of hybrid-electric propulsion system for a general aviation aircraft. The work was performed by a joint team of CIRA and the Department of Industrial Engineering of the University of Naples “Federico II”. Electric and hybrid electric propulsion for aircraft has gained widespread and significant attention over the past decade. The driver for industry interest has principally been the need to reduce emissions of combustion engine exhaust products and noise, but increasingly studies revealed potential for overall improvement in energy efficiency and mission flexibility of new aircraft types. The project goal was to demonstrate feasibility of aeronautic parallel hybrid-electric propulsion for a Light aircraft varying the mission profiles and the electric configuration. Through a creation, and application, of a global model, with software AMESim®, in which it can be represented everything about the components chosen by the industrial partners, some interesting considerations are carried out. In particular, it was confirmed that with the only integration of state of the art technologies, for some particular missions, the advantages of aircraft hybrid-electric propulsion, for light aircraft, are notable.


2021 ◽  
Vol 9 (2) ◽  
pp. 186
Author(s):  
Francesco Mauro ◽  
Elia Ghigliossi ◽  
Vittorio Bucci ◽  
Alberto Marinó

Nowadays, sustainable navigation is becoming a trending topic not only for merchant ships but also for pleasure vessels such as motoryachts. Therefore, the adoption of a hybrid-electric propulsion system and the installation of on-board storage devices could increase the greenness of a megayacht. This paper analyses the performance of three commercial propulsive solutions, using a dynamic operative profile and considering the influences of the smart berthing infrastructures. Results compare the yearly fuel consumptions of the analysed configurations for a reference megayacht.


Author(s):  
Nicolas Bellomo ◽  
Mirko Magarotto ◽  
Marco Manente ◽  
Fabio Trezzolani ◽  
Riccardo Mantellato ◽  
...  

AbstractREGULUS is an Iodine-based electric propulsion system. It has been designed and manufactured at the Italian company Technology for Propulsion and Innovation SpA (T4i). REGULUS integrates the Magnetically Enhanced Plasma Thruster (MEPT) and its subsystems, namely electronics, fluidic, and thermo-structural in a volume of 1.5 U. The mass envelope is 2.5 kg, including propellant. REGULUS targets CubeSat platforms larger than 6 U and CubeSat carriers. A thrust T = 0.60 mN and a specific impulse Isp = 600 s are achieved with an input power of P = 50 W; the nominal total impulse is Itot = 3000 Ns. REGULUS has been integrated on-board of the UniSat-7 satellite and its In-orbit Demonstration (IoD) is currently ongoing. The principal topics addressed in this work are: (i) design of REGULUS, (ii) comparison of the propulsive performance obtained operating the MEPT with different propellants, namely Xenon and Iodine, (iii) qualification and acceptance tests, (iv) plume analysis, (v) the IoD.


Sign in / Sign up

Export Citation Format

Share Document