scholarly journals GS1.2 - Nanoheterostructure Metal Oxide Gas Sensors: Opportunities and Challenges

2018 ◽  
Author(s):  
S. A. Akbar ◽  
D. R. Miller ◽  
M. A. Al-Hashem ◽  
P. Karnati ◽  
J. Walker ◽  
...  
ACS Omega ◽  
2021 ◽  
Author(s):  
Yulong Chen ◽  
Mingjie Li ◽  
Wenjun Yan ◽  
Xin Zhuang ◽  
Kar Wei Ng ◽  
...  

2018 ◽  
Author(s):  
T. Graunke ◽  
S. Raible ◽  
K. R. Tarantik ◽  
K. Schmitt ◽  
J. Wöllenstein

2021 ◽  
pp. 1-1
Author(s):  
Hannaneh Mahdavi ◽  
Saeideh Rahbarpour ◽  
Reza Goldoust ◽  
Seyed-Mohsen Hosseini-Golgoo ◽  
Hamidreza Jamaati

Proceedings ◽  
2018 ◽  
Vol 2 (13) ◽  
pp. 701 ◽  
Author(s):  
Verena Leitgeb ◽  
Katrin Fladischer ◽  
Frank Hitzel ◽  
Florentyna Sosada-Ludwikowska ◽  
Johanna Krainer ◽  
...  

Integration of metal oxide nanowires in metal oxide gas sensors enables a new generation of gas sensor devices, with increased sensitivity and selectivity. For reproducible and stable performance of next generation sensors, the electric properties of integrated nanowires have to be well understood, since the detection principle of metal oxide gas sensors is based on the change in electrical conductivity during gas exposure. We study two different types of nanowires that show promising properties for gas sensor applications with a Scanning Probe Microscope—Scanning Electron Microscope combination. Electron Beam Induced Current and Kelvin Probe Force Microscopy measurements with a lateral resolution in the nanometer regime are performed. Our work offers new insights into the dependence of the nanowire work function on its composition and size, and into the local interaction between electron beam and semiconductor nanowires.


2020 ◽  
Vol 3 (5) ◽  
pp. 280-289 ◽  
Author(s):  
Radislav A. Potyrailo ◽  
Steven Go ◽  
Daniel Sexton ◽  
Xiaxi Li ◽  
Nasr Alkadi ◽  
...  

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 882 ◽  
Author(s):  
Christof Hammer ◽  
Johannes Warmer ◽  
Sebastian Sporrer ◽  
Peter Kaul ◽  
Ronald Thoelen ◽  
...  

The choice of suitable semiconducting metal oxide (MOX) gas sensors for the detection of a specific gas or gas mixture is time-consuming since the sensor’s sensitivity needs to be characterized at multiple temperatures to find its optimal operating conditions. To obtain reliable measurement results, it is very important that the power for the sensor’s integrated heater is stable, regulated and error-free (or error-tolerant). Especially the error-free requirement can be only be achieved if the power supply implements failure-avoiding and failure-detection methods. The biggest challenge is deriving multiple different voltages from a common supply in an efficient way while keeping the system as small and lightweight as possible. This work presents a reliable, compact, embedded system that addresses the power supply requirements for fully automated simultaneous sensor characterization for up to 16 sensors at multiple temperatures. The system implements efficient (avg. 83.3% efficiency) voltage conversion with low ripple output (<32 mV) and supports static or temperature-cycled heating modes. Voltage and current of each channel are constantly monitored and regulated to guarantee reliable operation. To evaluate the proposed design, 16 sensors were screened. The results are shown in the experimental part of this work.


Sign in / Sign up

Export Citation Format

Share Document