Automated 3D design of an active element of a gas-discharge ion argon laser

2021 ◽  
Vol 1 (3) ◽  
pp. 32-37
Author(s):  
V. A. Stepanov ◽  
E. V. Ovchinnikova ◽  
A. O. Serebryakov
1973 ◽  
Vol 18 (5) ◽  
pp. 579-582
Author(s):  
N. A. Razmadze ◽  
Z. D. Chkuaseli ◽  
I. Y. Butov

Author(s):  
Burton B. Silver ◽  
Theodore Lawwill

Dutch-belted 1 to 2.5 kg anesthetized rabbits were exposed to either xenon or argon laser light administered in a broad band, designed to cover large areas of the retina. For laser exposure, the pupil was dilated with atropine sulfate 1% and pheny lephrine 10%. All of the laser generated power was within a band centered at 5145.0 Anstroms. Established threshold for 4 hour exposures to laser irradiation are in the order of 25-35 microwatts/cm2. Animals examined for ultrastructural changes received 4 hour threshold doses. These animals exhibited ERG, opthalmascopic, and histological changes consistent with threshold damage.One month following exposure the rabbits were killed with pentobarbitol. The eyes were immediately enucleated and dissected while bathed in 3% phosphate buffered gluteraldehyde.


Author(s):  
Pham V. Huong ◽  
Stéphanie Bouchet ◽  
Jean-Claude Launay

Microstructure of epitaxial layers of doped GaAs and its crystal growth dynamics on single crystal GaAs substrate were studied by Raman microspectroscopy with a Dilor OMARS instrument equipped with a 1024 photodiode multichannel detector and a ion-argon laser Spectra-Physics emitting at 514.5 nm.The spatial resolution of this technique, less than 1 μm2, allows the recording of Raman spectra at several spots in function of thickness, from the substrate to the outer deposit, including areas around the interface (Fig.l).The high anisotropy of the LO and TO Raman bands is indicative of the orientation of the epitaxial layer as well as of the structural modification in the deposit and in the substrate at the interface.With Sn doped, the epitaxial layer also presents plasmon in Raman scattering. This fact is already very well known, but we additionally observed that its frequency increases with the thickness of the deposit. For a sample with electron density 1020 cm-3, the plasmon L+ appears at 930 and 790 cm-1 near the outer surface.


1997 ◽  
Vol 7 (5) ◽  
pp. 1039-1044
Author(s):  
N. N. Lebedeva ◽  
V. I. Orbukh ◽  
B. G. Salamov ◽  
M. Özer ◽  
K. Çolakoǧlu ◽  
...  

1997 ◽  
Vol 7 (4) ◽  
pp. 927-936 ◽  
Author(s):  
B. G. Salamov ◽  
K. Çolakoǧlu ◽  
Ş. Altındal ◽  
M. Özer

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-873-C7-874
Author(s):  
Yu. I. Filenko ◽  
B. M. Stepanov ◽  
L. S. Ushakov

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-677-C7-678
Author(s):  
S. W. Temko ◽  
K. W. Temko ◽  
S. K. Kuzmin
Keyword(s):  
Real Gas ◽  

Sign in / Sign up

Export Citation Format

Share Document