scholarly journals Comparative genetic and morphometric characterization of sympatric populations of Heterobranchus bidorsalis and Heterobranchus longifilis

2020 ◽  
Vol 44 (5) ◽  
pp. 24-28
Author(s):  
W. A. Olaniyi ◽  
F. A. Akinsemolu ◽  
D. J. Ogunyemi ◽  
O. G. Omitogun

African catfish species of Heterobranchus longifilis and H. bidorsalis are gaining breeding potentials and receiving great attention among catfish stakeholders. However, very few comparative research works have been done on the natural populations and cultured stocks of these economically important species. In this study, the genetic evaluation of the fish species populations obtained from Lake Kainji, New Bussa, Niger State, Nigeria, was conducted through Sodium Dodecyl Sulphate - Polyacylamide Gel Electrophoresis oftheir serum proteins, and morphometric evaluation. Morphometric data showed that adipose fin attributes [length; depth (cm), % standard length (SL)] of 23.4±1.1; 4.2±0.5 in the H. bidorsalis confirmed its hyper-development compared to H. longifilis of 25.7±3.2; 4.4±0.6 respectively. The pre-dorsal length gave higher value (%SL) in the H. longifilis (38.6±2.2) than H. bidorsalis (34.6±1.2); while H. bidorsalis further possessed more counts at dorsal and anal fin rays than H. longifilis. The comparative dendrogram of the PAST analysis showed a genetic distance of 4.2% that indicated the specificity of these species and, though significantly different, they had very close relationship. Therefore, proper identification of these species is highly necessary to maintain genetic purity in breeding programmes and biodiversity.

2017 ◽  
Vol 147 (2) ◽  
Author(s):  
James E. Barasa ◽  
Sinebongo Mdyogolo ◽  
Romulus Abila ◽  
Johannes Paul Grobler ◽  
Robert A. Skilton ◽  
...  

African catfish, Clarias gariepinus, is an important species in aquaculture and fisheries in Kenya. Mitochondrial D-loop control region was used to determine genetic variation and population structure in samples of C. gariepinus from 10 sites including five natural populations (Lakes Victoria (LVG), Kanyaboli (LKG), Turkana (LTA), Baringo (LBA) and Jipe (LJP), and five farms (Sangoro Aquaculture Center (SAN), Sagana Aquaculture Centre (SAG), University of Eldoret Fish Farm (UoE), Kibos Fish Farm (KIB), and Wakhungu Fish Farm (WKU)) in Kenya. Similarly, samples from eight localities (four natural populations: LVG/LKG, LTA, LBA, and four farmed: SAN, SAG, KIB, UoE) were genotyped using six microsatellite DNA loci. For the D-loop control region, samples from natural sites exhibited higher numbers of haplotypes and haplotype diversities compared to farmed samples, and 88.2% of haplotypes were private. All except LJP and LTA shared haplotypes, and the highest number of shared haplotypes (8) was detected in KIB. The 68 haplotypes we found in 268 individuals grouped into five phylogenetic clades: LVG/LKG, LTA, LBA, LJP and SAG. Haplotypes of farmed C. gariepinus mostly have haplotypes typical of LVG/LKG, and some shared haplotypes of the LBA population. Microsatellite analysis showed farmed samples have higher numbers of alleles than natural samples, but higher observed and expected heterozygosity levels were found in samples of natural populations. Fifteen pair-wise comparisons had significantly different FST values. All samples were in Hardy-Weinberg equilibrium. Samples from the eight localities grouped into four genetic clusters (LVG/LKG, LTA, LBA and SAG), indicating genetically distinct populations, which should be considered for aquaculture and conservation.


2015 ◽  
Vol 10 (2) ◽  
pp. 91 ◽  
Author(s):  
Bambang Iswanto ◽  
Imron Imron ◽  
Rommy Suprapto ◽  
Huria Marnis

African catfish (Clarias gariepinus Burchell, 1822) has become a great important species in Indonesian aquaculture. Several strains of the African catfish have been introduced to Indonesia for aquaculture purposes, initiated by Dumbo strain from Taiwan in 1985, followed by Paiton strain from Thailand in 1998, then Egypt strain from Egypt in 2007, Masamo strain from Thailand in 2010 and later Kenya strain from Kenya in 2011. Since its introductions, there were no reports yet on their characterization studies. The present study was conducted to morphologically characterize the strains of African catfish introduced to Indonesia, i.e. Dumbo, Paiton, Egypt, Masamo, and Kenya strains. Morphometric and meristic data obtained were analyzed using Principal Component Analysis. Results of the morphometric characterization in the present study revealed that Dumbo, Paiton, Masamo, and Kenya strains were indistinguishable, while morphometric characteristic of Egypt strain was more or less different from those of the other strains. On the other hand, results of the meristic characterization suggested that meristic characteristics of all strains of the introduced African catfish were not different from each other. Therefore, to keep the genetic purity of those introduced strains, they should be properly maintained in isolated places.


Blood ◽  
1986 ◽  
Vol 68 (3) ◽  
pp. 737-742
Author(s):  
BR Tomasini ◽  
DF Mosher

Vitronectin (serum spreading factor), a major serum cell adhesion molecule, was compared with S-protein, the inhibitor of the C5–9 membrane attack complex. Data from the literature indicate that S- protein and vitronectin are alpha globulins with the same aminoterminal residues, amino acid compositions, and concentrations in normal plasma (150 to 250 micrograms/mL). Both proteins have been reported to interact with the thrombin-antithrombin complex. The cDNA sequences of vitronectin and S-protein were recently determined and found to be almost identical. In the present studies, rabbit-anti-S-protein and a monoclonal antibody to vitronectin both recognized 65,000- and 75,000- molecular weight (mol wt) polypeptides when plasma or serum proteins were separated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and transferred to nitrocellulose paper. The 65,000 and 75,000-mol wt polypeptides bound more avidly from serum than plasma to monoclonal anti-vitronectin or heparin coupled to agarose. The presence or absence of the polypeptides constituted a major difference between the heparin-binding proteins of serum and plasma. When complement- activated serum and unactivated serum were separated by gel filtration, vitronectin coeluted with C9 in high-mol-wt fractions of activated serum but not unactivated serum. Purified S-protein was recognized by the monoclonal antibody to vitronectin and promoted spreading of human skin fibroblasts. Both vitronectin and S-protein were degraded by thrombin. On the basis of immunological and functional, as well as biochemical, properties, therefore, S-protein and vitronectin are the same.


1978 ◽  
Vol 169 (2) ◽  
pp. 265-276 ◽  
Author(s):  
David E. Woolley ◽  
Robert W. Glanville ◽  
Dennis R. Roberts ◽  
John M. Evanson

1. The neutral collagenase released into the culture medium by explants of human skin tissue was purified by ultrafiltration and column chromatography. The final enzyme preparation had a specific activity against thermally reconstituted collagen fibrils of 32μg of collagen degraded/min per mg of enzyme protein, representing a 266-fold increase over that of the culture medium. Electrophoresis in polyacrylamide disc gels showed it to migrate as a single protein band from which enzyme activity could be eluted. Chromatographic and polyacrylamide-gel-elution experiments provided no evidence for the existence of more than one active collagenase. 2. The molecular weight of the enzyme estimated from gel filtration and sodium dodecyl sulphate/polyacrylamide-gel electrophoresis was approx. 60000. The purified collagenase, having a pH optimum of 7.5–8.5, did not hydrolyse the synthetic collagen peptide 4-phenylazobenzyloxycarbonyl-Pro-Leu-Gly-Pro-d-Arg-OH and had no non-specific proteinase activity when examined against non-collagenous proteins. 3. It attacked undenatured collagen in solution at 25°C, producing the two characteristic products TCA(¾) and TCB(¼). Collagen types I, II and III were all cleaved in a similar manner by the enzyme at 25°C, but under similar conditions basement-membrane collagen appeared not to be susceptible to collagenase attack. At 37°C the enzyme attacked gelatin, producing initially three-quarter and one-quarter fragments of the α-chains, which were degraded further at a lower rate. As judged by the release of soluble hydroxyproline peptides and electron microscopy, the purified enzyme degraded insoluble collagen derived from human skin at 37°C, but at a rate much lower than that for reconstituted collagen fibrils. 4. Inhibition of the skin collagenase was obtained with EDTA, 1,10-phenanthroline, cysteine, dithiothreitol and sodium aurothiomaleate. Cartilage proteoglycans did not inhibit the enzyme. The serum proteins α2-macroglobulin and β1-anti-collagenase both inhibited the enzyme, but α1-anti-trypsin did not. 5. The physicochemical and enzymic properties of the skin enzyme are discussed in relation to those of other human collagenases.


Sign in / Sign up

Export Citation Format

Share Document