scholarly journals Optimizing growth condition of Bifidobacterium animalis subsp. lactis JNU306 in the yeast extract-peptone-glucose medium using response surface methodology’

Author(s):  
Thi Dang ◽  
Cheng-Chung Yong ◽  
Sungsue Rheem ◽  
Sejong Oh
2013 ◽  
Vol 81 (1) ◽  
pp. 59-64 ◽  
Author(s):  
Masumeh Anvari ◽  
Gholam Khayati ◽  
Shora Rostami

This study was aimed to optimise lactose, inulin and yeast extract concentration and also culture pH for maximising the growth of a probiotic bacterium,Bifidobacterium animalissubsp.lactisin apple juice and to assess the effects of these factors by using response surface methodology. A second-order central composite design was applied to evaluate the effects of these independent variables on growth of the microorganism. A polynomial regression model with cubic and quadratic terms was used for analysis of the experimental data. It was found that the effects involving inulin, yeast extract and pH on growth of the bacterium were significant, and the strongest effect was given by the yeast extract concentration. Estimated optimum conditions of the factors on the bacterial growth are as follows: lactose concentration=9·5 g/l; inulin concentration=38·5 mg/l; yeast extract concentration=9·6 g/l and initial pH=6·2.


2011 ◽  
Vol 138-139 ◽  
pp. 1209-1214
Author(s):  
Xiao Yu Liu ◽  
Fan Xing Meng ◽  
Yi Bo Zhang ◽  
Huan He ◽  
Wei Han ◽  
...  

Response surface methodology (RSM) was used for statistical optimization of fermentation medium that influenced the yield of endo-polysaccharide from cultivated mycelia of Cordyceps militaris. First, the Plackett-Burman design was used to evaluate the effects of ten variables including glucose, maltose, peptone, yeast extract, KH2PO4, MgSO4, CaCl2, VB1, inoculum density and medium capacity. Among these variables, glucose, peptone and yeast extract were identified to have the significant effects. Subsequently, response surface methodology based on a five-level three-factor central composite design was employed to determine the maximum dry weight (DW) of mycelial biomass at optimum concentration of glucose, peptone and yeast extract. The mycelia growth was found to correlate to the three parameters that could be represented by second-order polynomial models. The optimal values of the three parameters were determined as 4.62% glucose, 3.36% peptone and 0.43% yeast extract. The prediction DW was 23.727g/L. The actual experimental results were in agreement with the prediction.


2013 ◽  
Vol 419 ◽  
pp. 328-333 ◽  
Author(s):  
Chao Zhang ◽  
Rui Huang ◽  
Hui Tian ◽  
Ru Ming Zhao ◽  
Fa Shun Yu ◽  
...  

β-Glucosidase is the key enzyme for the utilization of lignocellulose.But the commercial β-glucosidase can’t be produced. This paper focuses on the study of the β-glucosidase fermentation process.The fermentation medium components for β-glucosidase production from Aspergil lusniger was optimized by response surface methodology (RSM). Firstly, the three of the most important influence factors yeast extract, MnSO4•H2O and MgSO4•7H2O was obtained from Plackett-Burman design screening. Then the path of steepest ascent experiment was adopted to approach the optimal region of the medium composition. Lastly, the optimal concentration and mutual effect of three factors were predicted by RSM. The results showed that the best medium composition was Malt extract 18g/L, Yeast extract 3.22g/L, KH2PO4 3g/L, MnSO4•H2O 0.58mM, Tween-80 0.5mL/L and MgSO4•7H2O 0.23g/L. Under these fermentation conditions, the activity of β-glucosidase was up to 7.33IU/mL with increasing 23.2% than before.


2011 ◽  
Vol 65 (2) ◽  
Author(s):  
Bhimabol Khongto ◽  
Kobkul Laoteng ◽  
Anan Tongta

AbstractGamma-linolenic acid (GLA, C18:3Δ6,9,12) is an n-6 polyunsaturated fatty acid (PUFA) that has been used for the alleviation and treatment of a number of symptoms and diseases. Increasing GLA demand has led to a search for alternative producers and potential strategies for GLA production. Based on the successful performance of Hansenula polymorpha, a methylotrophic yeast, as a “cell factory” for the production of valuable bioproducts, a bioprocess development approach was implemented for GLA production in the recombinant yeast carrying the mutated Δ6-desaturase gene of Mucor rouxii. Using a substrate-feeding strategy under glycerol-limited conditions, the physical-chemical variables during the fed-batch fermentation of the recombinant H. polymorpha were optimised for GLA production through response surface methodology using a Box-Behnken design. The medium composition, including yeast extract and trace elements, and dissolved oxygen tension (DOT) were targeted. We found that DOT was the most effective variable for enhancing GLA yield. These results also suggest that the optimum conditions for GLA production are 28 % saturation of DOT, 1 g L−1 of yeast extract and 3.6 mL L−1 of the Pichia trace metals 1 (PTM1).


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
C. K. Venil ◽  
V. Mohan ◽  
P. Lakshmanaperumalsamy ◽  
M. B. Yerima

An indigenous bacterium, Bacillus REP02, was isolated from locally sourced chromium electroplating industrial effluents. Response surface methodology was employed to optimize the five critical medium parameters responsible for higher % Cr2+ removal by the bacterium Bacillus REP02. A three-level Box-Behnken factorial design was used to optimize K2HPO4, yeast extract, MgSO4, NH4NO3, and dextrose for Cr2+ removal. A coefficient of determination (R2) value (0.93), model F-value (3.92) and its low P-value (F<0.0008) along with lower value of coefficient of variation (5.39) indicated the fitness of response surface quadratic model during the present study. At optimum parameters of K2HPO4 (0.6 g L−1), yeast extract (5.5 g L−1), MgSO4 (0.04 g L−1), NH4NO3 (0.20 g L−1), and dextrose (12.50 g L−1), the model predicted 98.86% Cr2+ removal, and experimentally, 99.08% Cr2+ removal was found.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
P. Saravanan ◽  
R. Muthuvelayudham ◽  
T. Viruthagiri

Optimization of the media components for cellulase production usingTrichoderma reeseiwas carried out. The optimization of cellulase production using pineapple waste as substrate was performed with statistical methodology based on experimental designs. The screening of nutrients and their influence on the cellulase production was studied using a Plackett-Burman design. Avicel, soybean cake flour, KH2PO4, and yeast extract were found to have the positive influence for the production of cellulase. The selected components were optimized using response surface methodology. The optimum concentrations are avicel: 26.5 g/L, soybean cake flour: 22.5 g/L, KH2PO4: 4.5 g/L, and yeast extract: 12.3 g/L. A maximum cellulase activity of 8.61 IU/mL was obtained under the optimized medium in the validation experiment.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Pilanee Vaithanomsat ◽  
Molnapat Songpim ◽  
Taweesiri Malapant ◽  
Akihiko Kosugi ◽  
Warunee Thanapase ◽  
...  

A newly isolated fungusAspergillus nigerSOI017 was shown to be a good producer of β-glucosidase from all isolated fungal strains. Fermentation condition (pH, cellobiose concentration, yeast extract concentration, and ammonium sulfate concentration) was optimized for producing the enzyme in shake flask cultures. Response surface methodology was used to investigate the effects of 4 fermentation parameters (yeast extract concentration, cellobiose concentration, ammonium sulfate concentration, and pH) on β-glucosidase enzyme production. Production of β-glucosidase was most sensitive to the culture medium, especially the nitrogen source yeast extract. The optimized medium for producing maximum β-glucosidase specific activity consisted of 0.275% yeast extract, 1.125% cellobiose, and 2.6% ammonium sulfate at a pH value of 3.


Sign in / Sign up

Export Citation Format

Share Document