mutual effect
Recently Published Documents


TOTAL DOCUMENTS

330
(FIVE YEARS 102)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 40 (2) ◽  
pp. 1-33
Author(s):  
Hui Li ◽  
Lianyun Li ◽  
Guipeng Xv ◽  
Chen Lin ◽  
Ke Li ◽  
...  

Social Recommender Systems (SRS) have attracted considerable attention since its accompanying service, social networks, helps increase user satisfaction and provides auxiliary information to improve recommendations. However, most existing SRS focus on social influence and ignore another essential social phenomenon, i.e., social homophily. Social homophily, which is the premise of social influence, indicates that people tend to build social relations with similar people and form influence propagation paths. In this article, we propose a generic framework Social PathExplorer (SPEX) to enhance neural SRS. SPEX treats the neural recommendation model as a black box and improves the quality of recommendations by modeling the social recommendation task, the formation of social homophily, and their mutual effect in the manner of multi-task learning. We design a Graph Neural Network based component for influence propagation path prediction to help SPEX capture the rich information conveyed by the formation of social homophily. We further propose an uncertainty based task balancing method to set appropriate task weights for the recommendation task and the path prediction task during the joint optimization. Extensive experiments have validated that SPEX can be easily plugged into various state-of-the-art neural recommendation models and help improve their performance. The source code of our work is available at: https://github.com/XMUDM/SPEX.


2022 ◽  
Vol 24 (4) ◽  
pp. 25-45
Author(s):  
Vladimir F. Dmitrikov ◽  
Dmitry V. Shushpanov

Based on the measured impedance of the inductors wound on various ferrite cores and with a different number of turns, an equivalent high frequency (0 Hz 500 MHz) circuit model was built. The equivalent circuit model was built taking into account the physical processes occurring in the inductor: effect of wire resistance, effect of core material, mutual effect of wire and core material. The attempt explaining why the frequency characteristics (modulus and phase) of the inductor complex impedance have such a character in a wide frequency band (up to 500 MHz) was made. It was shown that for constructing an equivalent circuit model (structure and parameters), measuring only the inductors resistance modulus is not enough. It is also necessary to measure the phase of the inductor complex resistance, which is ignored in many works on the synthesis of an e inductor equivalent circuit.


2022 ◽  
Vol 14 ◽  
pp. 184797902110697
Author(s):  
Saima Mirza ◽  
Asif Mahmood ◽  
Hassan Waqar

We explore the open innovation research model in order to remove barriers in service organizations, where lack of knowledge is the main barrier to innovation. The purpose of this paper is to propose a research model exploring the relationship between open innovation, organizational learning ability, absorptive capacity, and strategic innovation. In this study, we collected data from 330 pharmaceutical companies in Lahore and Karachi (Pakistan). The Structural equation model analysis was used through analysis of moment structures and statistical package for the social sciences to check the relationship between the variables. The results reveal that hypotheses related to innovation have been accepted. The findings of this study are evidence that various types of open innovation have different effects on strategic innovation. The inbound and outbound open innovation directly affects strategic innovation; the mutual effect of exploitative learning ability and explorative learning ability between open innovation and strategic innovation have indirect effects. Similarly, the empirical findings of absorptive capacity also significantly impact open innovation and organizational learning ability. This study contributes to the theory by introducing exploitative and explorative learning abilities as mediators between open innovation and strategic innovation. Moreover, it analyzes how absorptive capacity may enhance learning abilities through the open innovation phenomenon. Practically, this study would help the managers understand and improve organizational productivity and gain competitive advantage by creating, sharing, and utilizing knowledge through internal and external avenues.


2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Tao Ye ◽  
Lan-lan Li ◽  
Xue-mei Peng ◽  
Qin Li

Objective. Growing evidence shows that enhancer RNAs (eRNAs) are pivotal for tumor progression. In this research, our team aimed to identify the survival-related eRNAs and further explore their potential function in glioblastoma (GBM). Methods. RNA-sequencing data in 31 tumor types were acquired from TCGA datasets. The survival-related eRNAs were identified by the use of Kaplan-Meier survival analyses and Spearman’s correlation analyses. KEGG pathway enrichment analysis was completed to investigate the underlying signal paths of the critical eRNA. Pancancer assays were applied to explore the association between CYP1B1-AS1 and CYP1B1. Results. We identified 74 survival-related eRNAs and focused on CYP1B1-AS1 which displayed the greatest cor value. CYP1B1 was identified as a regulatory target of CYP1B1-AS1. KEGG analyses suggested that CYP1B1-AS1 might play an essential role through CK-CKR mutual effect, complement and coagulation cascades, TNF signal path, and JAK-STAT signal path. The pancancer verification outcomes revealed that CYP1B1-AS1 was related to survival in 4 cancers, i.e., LIHC, KIRP, KICH, and KIRC. Association was discovered between CYP1B1-AS1 and the targeted gene, CYP1B1, in 29 cancer types. Conclusion. The outcomes herein provided the first evidence that overexpression of CYP1B1-AS1 might be a potential molecular biomarker for predicting the prognosis of patients with GBM.


Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 882
Author(s):  
Mirjam Močnik ◽  
Nataša Marčun Varda

Obesogens are exogenous chemicals belonging to the group of endocrine-disrupting chemicals and are believed to interfere in obesity development. In children, several chemicals are under investigation, most commonly bisphenol A, phthalates, perfluorinated alkyl substances, and persistent organic pollutants, including organochlorinated pesticides, tributyltin, polychlorinated biphenyls and dioxins. Several associations have been studied between chemical exposure in utero and postnatally. Current opinion among researchers indicates that the obesogen theory is very likely; however, limited published studies show inconsistent support for the obesogenic effects of most substances in children and are limited by difficulty in providing the exact mechanisms of action, nor is their mutual effect in humans known, let alone in children. Existing data indicate that we have only scratched the surface and have much more to learn about obesogens. Hopefully, in the future, more information will provide an opportunity for policy makers to take action and protect public health.


Author(s):  
Xiaoyan Yang ◽  
Jing Yang ◽  
Yunlian Tang ◽  
Zhizhong Xie ◽  
Yang Zhang ◽  
...  

Background: Gastric cancer (GC), one of the common clinical malignant tumors of the digestive system, is the fourth most commonly diagnosed cancer and the second lethal cancer worldwide, has the characteristics of high metastasis, fatality, and recurrence rate. This research was conducted to investigate the role and mechanism of miR-4295 in gastric cancer. Methods: The expression capacity of miR-4295 was determined in gastric cancer tissues and its normal tissues by qRT-PCR. PTEN expression level was detected by western blot. SGC-7901 and MGC-803 cell lines were cultured and transfected with miR-4295 or its inhibitor. The effects of miR-4295 on cell proliferation, colony formation, migration and invasion in vitro were investigated. The mutual effect between miR-4295 and PTEN in 293T cells was explored by luciferase reporter gene assays. Results: The results showed that miR-4295 expression was higher in gastric cancer tissues and cell lines, and the miR-4295 level was significantly negative associated with the tumor size and distal metastasis of gastric cancer. Notably, up-regulated miR-4295 promoted cell proliferation, migration and invasion in vitro, whereas it led to contrary effects while down-regulating miR-4295 expression. Further mechanism studies displayed that miR-4295 could directly fasten the PTEN 3’UTR and dramatically decrease the level of PTEN in vitro. Conclusion : The findings revealed that miR-4295 could promote gastric cancer cell proliferation, migration and invasion, which might be attributed to targeting PTEN. Our study suggested that miR-4295 might be a potential therapeutic target for gastric cancer.


2021 ◽  
Vol 27 (8) ◽  
pp. 571-578
Author(s):  
Deshen Chen ◽  
Yan Zhang ◽  
Hongliang Qian ◽  
Huajie Wang ◽  
Xiaofei Jin

The stability of cable-net structures depends on the prestress of the system. Due to the large displacement and mutual effect of the cables, it is difficult to simulate the tensioning process and control the forming accuracy. The Backward Algorithm (BA) has been used to simulate the tensioning process. The traditional BA involves complicated and tedious matrix operations. In this paper, a new numerical method based on the Vector Form Intrinsic Finite Element (VFIFE) method is proposed for BA application. Moreover, the tensioning sequence of a complex cable-net structure is introduced. Subsequently, a new approach for BA application in the simulation of the tensioning process is presented, which combines the VFIFE approach and the notion of form-finding. Finally, a numerical example is simulated in detail and the results of different tensioning stages are analyzed to verify the feasibility of the proposed approach. This study provides a significant reference for improving the construction control and forming accuracy of complex prestressed cable-net structures.


2021 ◽  
Vol 24 (5) ◽  
pp. 60-75
Author(s):  
K. G. Kosushkin ◽  
B. S. Kritsky ◽  
R. M. Mirgazov

The article presents the results of computational studies of aerodynamic characteristics for unmanned lift-generating multi-rotor drones of various configurations. The distinctive features of rotors flow were characterized. The rotor interaction was evaluated. The computations were based on the nonlinear rotor blade vortex theory in a non-stationary arrangement. The combinations of four, eight (four coaxial) and fourteen two-bladed rotors at velocity V = 100, 150, 200 km/h were considered. Semi-empirical methods were employed to select the rotor angles of attack, rotation speed, blade installation angles and geometric parameters at the given take-off weight for each combination of rotors and flight airspeed. The computations showed that for a four-rotor lift-generating design (quad-rotor), two rotors installed downstream, depending on the velocity due to the mutual effect, have values of the thrust coefficients ≈10...20% less than those of the rotors located upstream. For a coaxial quad-copter, the effect of the upper front rotor on the upper rear rotor is similar to the effect of the front rotors on the rear ones in a four-rotor lift-generating design. The effect of the upper front rotor on the lower rear rotor does not vary in terms of the average thrust value, and variations are only local in nature. The interaction of other rotors is identical to that of the four-rotor version. A fourteen-rotor lift-generating multi-rotor drone has a complex flow pattern, which generates deviance in the thrust coefficients variation with respect to time. Depending on the mode and rotors location, the average rotor thrust coefficient can vary approximately twice. The computations showed that with the similar geometric parameters and kinematics characteristics, rotors thrust is substantially subject to variation, which causes destabilizing moments to a significant degree without additional control input. Thrust pulsations and, respectively, vibrations grow in intensity as the flight airspeed increases. Probably, the right choice of the rotor configuration and the automatic control system can counterbalance thrust surge by so-called "phasing", i.e. selecting an initial azimuth angle for each rotor.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6513
Author(s):  
Fedor I. Stepanov ◽  
Elena V. Torskaya

A new model for studying the kinetics of fatigue wear of a viscoelastic coating bonded to a rigid substrate is proposed. The fatigue mechanism is due to the cyclic interaction of the coating with a rough counterbody, which is modeled by a periodic system of smooth indenters. The study includes the solution of the problem of sliding contact of the indenter at a constant velocity along the viscoelastic coating, the calculation of stresses taking into account the mutual effect, and study of the process of damage accumulation in the material. The calculation of the damage function of the surface layer was carried out using the reduced stress criterion. Assuming the possibility of summation of accumulated damage, two processes were considered: delamination of surface layers of the coating and continuous fracture of the surface by the fatigue mechanism. The effect of the sliding velocity and viscoelastic properties of the material on the damage accumulation and the coating wear rate was analyzed. Two types of load, constant and stochastically varying, were used in modeling and analysis. It was found that the rate of fatigue wear of the coating increased and then became constant.


Sign in / Sign up

Export Citation Format

Share Document