burman design
Recently Published Documents


TOTAL DOCUMENTS

326
(FIVE YEARS 108)

H-INDEX

23
(FIVE YEARS 4)

Microbiology ◽  
2022 ◽  
Vol 168 (1) ◽  
Author(s):  
Minghui Zhou ◽  
Yan Zhang ◽  
Yajun Chen ◽  
Fangyan Zhang ◽  
Daihu Yang

Aspergillus niger TF05 was applied to decolorize Rose Bengal dye. The effects of carbon source, nitrogen source, metal ion and spore concentration on Rose Bengal treatment with A. niger TF05 were studied. A Plackett–Burman design (PBD) and a uniform design (UD) were used to optimize the decolorization conditions of A. niger TF05 and enhance its decolorization effect. The mechanism of Rose Bengal decolorization by A. niger TF05 was examined by analysing degradation products via UV–visible light spectroscopy, IR spectroscopy and GC-MS. The best decolorization effect was achieved in the single factor test with glucose and ammonium chloride as carbon and nitrogen sources, respectively. Mg2+ was an essential ion that could improve the mould ball state and adsorption efficiency if the spore concentration was maintained at 106 spores ml–1. The optimal decolorization conditions obtained using the PBD and UD methods were 11.5 g l−1 glucose, 6.5 g l−1 ammonium chloride, 0.4 g l−1 magnesium sulphate, pH 5.8, 28 °C, 140 r.p.m. rotational speed, 0.18 g l−1 dye concentration, 0.5 ml of inocula and 120 h decolorization time. Under these conditions, the maximum decolorization rate was 106%. Spectral analysis suggested that the absorption peak of the product changed clearly after decolorization; GC-MS analysis revealed that the intermediate product tetrachlorophthalic anhydride formed after decolorization. The combined use of the PBD and UD methods can optimize multi-factor experiments. A. niger TF05 decolorized Rose Bengal during intracellular enzymatic degradation after adsorption.


2021 ◽  
Vol 12 ◽  
Author(s):  
Van Thi Nguyen ◽  
Nan Hee Yu ◽  
Yookyung Lee ◽  
In Min Hwang ◽  
Hung Xuan Bui ◽  
...  

Among 200 fungal strains isolated from the soil, only one culture filtrate of Aspergillus flavus JCK-4087 showed strong nematicidal activity against Meloidogyne incognita. The nematicidal metabolite isolated from the culture filtrate of JCK-4087 was identified as cyclopiazonic acid (CPA). Because JCK-4087 also produced aflatoxins, six strains of Penicillium commune, which have been reported to be CPA producers, were obtained from the bank and then tested for their CPA productivity. CPA was isolated from the culture filtrate of P. commune KACC 45973. CPA killed the second-stage juveniles of M. incognita, M. hapla, and M. arearia with EC50–3 days 4.50, 18.82, and 60.51 μg mL–1, respectively. CPA also significantly inhibited egg hatch of M. incognita and M. hapla after a total of 28 days of treatment with the concentrations > 25 μg mL–1. The enhancement of CPA production by P. commune KACC 45973 was explored using an optimized medium based on Plackett–Burman design (PBD) and central composite design (CCD). The highest CPA production (381.48 μg mL–1) was obtained from the optimized medium, exhibiting an increase of 7.88 times when compared with that from potato dextrose broth culture. Application of the wettable power-type formulation of the ethyl acetate extract of the culture filtrate of KACC 45973 reduced gall formation and nematode populations in tomato roots and soils under greenhouse conditions. These results suggest that CPA produced by P. commune KACC 45973 can be used as either a biochemical nematicide or a lead molecule for developing chemical nematicides to control root-knot nematodes.


2021 ◽  
Author(s):  
Fatemeh Mahmoudian ◽  
Mostafa Akbariqomi ◽  
Reza Heidari ◽  
Mohammad H Ghahremani ◽  
Nader Roshan ◽  
...  

Aim: Cell-free DNA in the plasma is known to be a potential biomarker for noninvasive diagnosis of oncogenic mutations. The authors aimed to design an optimized padlock probe-based hyperbranched rolling circle amplification biosensor to detect the  KRAS G12D mutation using fluorescence and colorimetric methods. Methods: Single-factor experiments, Plackett–Burman design and response surface methodology were applied to optimize the padlock probe-based hyperbranched rolling circle amplification reaction. Results: The maximum fluorescence intensity was achieved at a padlock probe concentration of 1.5 pM and target concentration of 9 pM at 38°C ligation temperature. The proposed biosensor has a low detection limit of 60 fM of target DNA and a linear response in the concentration range of 60 fM to 0.2 pM. Conclusion: The results indicated the power of these assays to detect  KRAS point mutations in liquid state reactions.


Plants ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 2468
Author(s):  
Gayathiri Verasoundarapandian ◽  
Nur Nadhirah Zakaria ◽  
Noor Azmi Shaharuddin ◽  
Khalilah Abdul Khalil ◽  
Nurul Aini Puasa ◽  
...  

Oil spill incidents are hazardous and have prolonged damage to the marine environment. Management and spill clean-up procedures are practical and rapid, with several shortcomings. Coco peat (CP) and coco fibre (CF) are refined from coconut waste, and their abundance makes them desirable for diesel spillage treatment. Using a filter-based system, the selectivity of coco peat sorbent was tested using CP, CF and peat-fibre mix (CPM). CP exhibited maximal diesel sorption capacity with minimal seawater uptake, thus being selected for further optimisation analysis. The heat treatment considerably improved the sorption capacity and efficiency of diesel absorbed by CP, as supported by FTIR and VPSEM–EDX analysis. Conventional one-factor-at-a-time (OFAT) examined the performance of diesel sorption by CP under varying parameters, namely temperature, time of heating, packing density and diesel concentration. The significant factors were statistically evaluated using response surface methodology (RSM) via Plackett–Burman design (PB) and central composite design (CCD). Three significant (p < 0.05) factors (time, packing density and diesel concentration) were identified by PB and further analysed for interactions among the parameters. CCD predicted efficiency of diesel absorbed at 59.92% (71.90 mL) (initial diesel concentration of 30% v/v) and the experimental model validated the design with 59.17% (71.00 mL) diesel sorbed at the optimised conditions of 14.1 min of heating (200 °C) with packing density of 0.08 g/cm3 and 30% (v/v) of diesel concentration. The performance of CP in RSM (59.17%) was better than that in OFAT (58.33%). The discoveries imply that natural sorbent materials such as CP in oil spill clean-up operations can be advantageous and environmentally feasible. This study also demonstrated the diesel-filter system as a pilot study for the prospective up-scale application of oil spills.


Author(s):  
Emmanuel N’Dri Koffi ◽  
Yeboue Koffi François Kouakou ◽  
Bleouh Yves Nyamien ◽  
Roland Kouadoueu Deli ◽  
Louise Atchibri Anin

The leaves of Lippia multiflora contain secondary metabolites including flavonoids which have an important antioxidant activity. This study aims to optimize the extraction conditions of total flavonoids and the antioxidant activity of these leaves. To achieve this, the Plackett-Burman design was used for the screening of the factors influencing the extraction, then the central composite design was implemented for the optimization itself. The effects of five factors, such as the plant-to-solvent ratio, the nature of the extraction solvent, the extraction time, the extraction method and the size of the L. multiflora leaves, on the extraction of total flavonoids and the antioxidant activity were studied. Results of Plackett-Burman design indicated that factors influencing both flavonoids extraction and antioxidant activity were the solid-liquid ratio and extraction time. The predicted optimal conditions for the highest flavonoids content from  L. multiflora leaf with better antioxidant activity were found with aqueous decoction for 30 min with 3.5 g of cut leaves in 100 mL of distilled water. Using the predicted conditions, experimental responses were 87.18 ± 1.03 mg/g QE and 372.34 ± 4.04 µmol/g TE for total flavonoids and antioxidant capacity, respectively. Under the above-mentioned conditions, the experimental results are very close to predicted one. Thus, L. multiflora leaf can be considered as a natural source of flavonoids content with good antioxidant activity.


Folia Medica ◽  
2021 ◽  
Vol 63 (5) ◽  
pp. 775-785
Author(s):  
Vinodkumar D. Ramani ◽  
Girish K. Jani ◽  
Girish U. Sailor

Introduction: Nanoparticle formulation of pitavastatin calcium is a potential alternative to solve the solubility related problem. However, the formulation of nanoparticle involves various parameters that affect product quality. Plackett-Burman design could facilitate an economical experimental plan that focuses on determining the relative significance of many. Aim: The objective of this study was to screen the variables which could significantly affect the pitavastatin nanoparticle formulation. Materials and methods: The pitavastatin nanoparticles were formulated by preparing nanosuspension using the emulsion solvent evaporation technique followed by freeze-drying. A Plackett-Burman screening design methodology was employed in which seven factors at two levels were tested at 12 runs to study the effect of formulation and process variables on particle size and polydispersity index of nanoparticles. The surface morphology and crystalline nature of nanoparticle were also evaluated. Results: The particle size and polydispersity index of nanosuspension was found in the range of 113.1 to 768.5 nm and 0.068 to 0.508, respectively. Statistical analysis of various variables revealed that stabilizer concentration, injection flow rate, and stirring rate were the most influential factors affecting the particle size and polydispersity index of the formulation. X-ray diffraction (XRD) and scanning electron microscopy (SEM) study suggested the amorphous nature of nanoparticles. Conclusions: This study concluded that the Plackett-Burman design was an efficient tool for screening the process and formulation variables affecting the properties of pitavastatin nanoparticles and also for the identification of the most prominent factor.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zeiad Moussa ◽  
Doaa B. Darwish ◽  
Salma S. Alrdahe ◽  
WesamEldin I. A. Saber

The current study reported a new keratinolytic bacterium, which was characterized as Bacillus paramycoides and identified by 16S rRNA, and the sequence was then deposited in the GenBank (MW876249). The bacterium was able to degrade the insoluble chicken feather keratin (CFK) into amino acids (AA) through the keratinase system. The statistical optimization of the biodegradation process into AA was performed based on the Plackett–Burman design and rotatable central composite design (RCCD) on a simple solid-state fermentation medium. The optimum conditions were temperature, 37°C, 0.547 mg KH2PO4, 1.438 mg NH4Cl, and 11.61 days of incubation. Innovatively, the degradation of the CFK process was modeled using the artificial neural network (ANN), which was better than RCCD in modeling the biodegradation process. Differentiation of the AA by high-performance liquid chromatography (HPLC) revealed the presence of 14 AA including essential and non-essential ones; proline and aspartic acids were the most dominant. The toxicity test of AA on the HepG2 cell line did not show any negative effect either on the cell line or on the morphological alteration. B. paramycoides ZW-5 is a new eco-friendly tool for CFK degradation that could be optimized by ANN. However, additional nutritional trials are encouraged on animal models.


Sign in / Sign up

Export Citation Format

Share Document