scholarly journals Plant Tissue culture and Ultra High Diluted studies: suggesting a novel model using in vitro techniques

Author(s):  
Carolina Santos Barreto ◽  
Fortune Homsani ◽  
Carla Holandino ◽  
Nina Claudia Barboza Da Silva

Plant tissue culture techniques have been used to evaluate the effects of many different substances and/ or conditions in plant growth and development. It provides information of great value about problems related to basic and applied aspects of plant as well as contributed to understanding of factors responsible for growth, metabolism, synthesis of secondary compounds, stress response. Considering all this wide range of applications and as all plant tissue culture techniques are undergone under axenic and controlled conditions (culture medium composition, light and temperature, for instance), it seems to be a value model for Ultra High Diluted (UHD) studies. Lippia alba is a Brazilian plant that tissue cultures protocols and in vitro essential oil production have already been described in scientific literature. None of all scientific papers evaluated the effects of UHD substances on in vitro development or secondary metabolic production. The main goal was to evaluate the use of plant tissue culture to investigate the effects of UHD benzilaminopurine (BA) on Lippia alba shoot culture. Nodal segments obtained from plants growth in vitro was subcultured to Murashigue & Skoog semi-solid medium added with 2ml of these different solutions: BA 3µmol, BA 12CH (10-24), water 12CH and water (no dilution and succussion). Weekly 1 ml of solutions were added to cultures. The experiment was repeated twice and each one consisted in 3 culture vessel with 5 nodal segments per treatment (n=30). All plants were maintained in growth room under controlled temperature (25°C), light and photoperiod (16L/8D). The tested substances were prepared according to the method of stepwise dilution and succussion as describe in Brazilian Homeopathic Pharmacopoeia. The experiment was blinded all the time. After 60d, plantlets were evaluated for number of shoots, shoot length, rooted plants (%), callus development (%) and fresh biomass. Data were submitted to ANOVA following by Duncan’s and t-test. Plants from water 12CH and BA 12CH increased the number of new shoots and promoted the highest shoot length. By adding BA 3µmol the organogenetic response was inhibited since neither shoot nor root were developed. However, it was observed a significant basal callus development. Plant tissue culture could be adapted for UHD studies. More studies are being conducted in way to analyze other experimental conditions and biochemical/phytochemical parameters.

2021 ◽  
Author(s):  
Siti Khadijah A. Karim

During the last three decades, plant cell, tissue, and organ culture have developed rapidly and become a major biotechnology tool in agriculture, horticulture, forestry, and industry. Many problems in conventional breeding techniques were solved via tissue culture techniques. Plant tissue culture technique permits the growing plants in test tube or closed container in vitro under controlled environment. This technique is devoted to solve two problems: 1) To keep the plant cells free from microbes. 2) To grow the desired plants by providing suitable nutrient medium and other environmental conditions. In this chapter, a review around plant tissue culture techniques that have been reported on oil palm breeding programme will be discussed. It is including the laboratory techniques, advantages and disadvantages of the technique, the problems to produce good and prolific oil palm tissue culture clones and mitigation measures that have been reported to overcome the problems. As a conclusion, this chapter reviews tissue culture techniques that could be used to propagate oil palm clones.


2015 ◽  
Vol 77 (24) ◽  
Author(s):  
Siti Suhaila A. Rahman ◽  
Norwati Muhammad ◽  
Nor Hasnida Hassan ◽  
Haliza Ismail ◽  
Nazirah Abdullah ◽  
...  

Neolamarckia cadamba (kelempayan) is a multipurpose and fast growing timber species. The tree is grown for timber, paper-making and as ornamental plant. It is reported that its barks and leaves possesed medicinal values and its flowers are used in perfumes. The species is also known to be suitable for plywood, packing case, toys and short-fibred pulp. Therefore, mass production of high quality planting material of N. cadamba is important to support plantation program of this species. Here we presented mass production of N. cadamba through tissue culture techniques. Nodal segments derived from in vitro germinated seeds were used and induced direct organogenesis to produce shoots and roots using MS media (1962) and plant growth regulators (BAP and IBA) that are relatively cheaper than previously used methods. The tissue culture technique of N. cadamba developed may help in ensuring supply of planting materials that are feasible for commercial plantation purposes.


2011 ◽  
Vol 22 ◽  
pp. S130 ◽  
Author(s):  
Ahmet Onay ◽  
Hakan Yildirim ◽  
Yelda Ozden Tokatli ◽  
Hulya Akdemir ◽  
Veysel Suzerer

2021 ◽  
Author(s):  
Priyanka Bijalwan ◽  
Shilpa .

In vitro culture of plant cells/tissues is now routine using a range of explant types from many of the important vegetable and fruit crops. Successful technologies include isolation, culture of tissues, cells, protoplasts, organs, embryos, ovules, anthers and microspores and regeneration from them of complete plantlets. The development of plant tissue culture technology represents one of the most exciting advances in plant sciences. For example, the prospect of being able to introduce, develop, produce, transfer and conserve the existing gene pool of plant sciences by using tissue culture methods opens up new opportunities for researches and entrepreneurs. The term plant tissue culture should denote in vitro cultivation of plant cells or tissues in an unorganized mass, i.e., callus culture. Plant tissue culture techniques, in combination with recombinant DNA technology, are the essential requirements for the development of transgenic plants. However, culture techniques like anther/pollen/ovule culture, meristem culture can themselves be utilized for crop improvement or may serve as an aid to conventional breeding. In recent, isolated microspore culture has developed as a breeding tool and an experimental system for various genetic manipulations. The inherent potentiality of a plant cell to give rise to a whole plant, a capacity which is often retained even after a cell has undergone final differentiation in the plant body, is described as ‘cellular totipotency’. On the other hand, production of virus-free plants via meristem culture can reduce losses caused by phyto-pathogens. Embryo culture has many potential uses ranging from overcoming seed dormancy to facilitation of inter-specific hybridization. Protoplast fusion technique can be used for the transfer of cytoplasmic male sterility from one species to another in a short period of time. In cabbage, male sterile cybrids are being utilized by seed companies to produce hybrid seeds on commercial scale and at competitive rates. Plant tissue culture and cell culture are providing useful methods for germplasm storage either by low temperature storage of organized tissue, or cryopreservation of cell or embryo culture.


Sign in / Sign up

Export Citation Format

Share Document