scholarly journals Use of trellis graphics in the analysis of results from field experiments in agriculture

2007 ◽  
Vol 4 (1) ◽  
Author(s):  
Katarina Čobanović ◽  
Emilija Nikolić-Đorić ◽  
Beba Mutavdžić

Trellis graphics (Becker, Cleveland, and Shyu, 1996) is a very effective method for visualizing multidimensional data sets. The basic idea behind trellis graphics is to display any of a large variety of 1-D, 2-D or 3-D statistical plot types in trellis layout of panels, where each panel displays a subset of the data for different values of one or more additional discrete or continuous conditioning variables. The data that we use for the illustration of different applications of trellis graphics are the results of a field experiment conducted at the Institute for Field and Vegetable Crops in Novi Sad in the period 1994–1998 (Čobanović et al., 2001) with three fertilizers (nitrogen, phosphorus and potassium) in three repetitions with nine variants of wheat. In the experiment, four quantities of each fertilizer were applied (0, 50, 100, 150 kg/ha) at plots of the same size in 20 from 64 possible combinations, whereby the yield of wheat (t/ha) was the measured outcome.

1987 ◽  
Vol 108 (2) ◽  
pp. 321-329 ◽  
Author(s):  
U. C. Sharma ◽  
B. R. Arora

SummarySix field experiments, three each during 1982–3 and 1983–4, were conducted on a sandy loam soil to study the effect of varying levels of nitrogen, phosphorus and potassium, in the absence and presence of farmyard manure (FYM) (30 t/ha), on the number of tubers and yield of potato in three grades. Increase in nitrogen, phosphorus and potassium application, in the absence or presence of FYM, did not significantly affect the total number of tubers/m2 but did affect the number of tubers in different grades. An increase in nitrogen and potassium significantly decreased the number of tubers/m2 in small (< 25 g) and increased in medium (25–75 g) and large (> 75 g) grades at 45, 60, 75 and 90 days after planting. Increase in the application of phosphorus increased the number of tubers/m2 in the small grade and decreased it in the large grade but did not affect the number in the medium grade. Increase in nitrogen and potassium application decreased the tuber yield in the small grade and increased it in the medium and large grades. Applied phosphorus increased the yield in the small and medium grades and decreased it in the large grade. The increase in the yield of tubers with increase in nitrogen and potassium application was found to be caused by an increase in the number of tubers in the medium and large grades at the expense of the small grade; however, with applied phosphorus the increase in yield was due to increase in the weight of individual tubers within the small and medium grades. FYM application decreased the number of tubers in the small grade and increased it in the medium and large grades. The response of potato to nitrogen increased and to phosphorus and potassium decreased with the application of FYM.


Insects ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Gill Prince ◽  
Dave Chandler

The aim of this study was to evaluate the potential of entomopathogenic fungi (EPF) for the control of aphid pests of field vegetable crops. Four biopesticides based on the EPF Beauveria bassiana (Botanigard ES and Naturalis L), Cordyceps fumosorosea s.l. (Preferal WG), and Akanthomyces dipterigenus (Vertalec) were evaluated in a laboratory bioassay against peach-potato aphid Myzus persicae, cabbage aphid Brevicoryne brassicae, and currant-lettuce aphid Nasonovia ribisnigri. There was significant variation in the spore dose provided by the products, with Botanigard ES producing the highest dose (639 viable spores per mm2). Botanigard ES also caused more mortality than the other products. Combining Vertalec with the vegetable oil-based adjuvant Addit had an additive effect on the mortality of B. brassicae. All fungal products reduced the number of progeny produced by M. persicae but there was no effect with B. brassicae or N. ribisnigri. When aphid nymphs were treated with Botanigard ES and Preferal WG, both products reduced population development, with up to 86% reduction occurring for Botanigard ES against M. persicae. In a field experiment, Botanigard ES sprayed twice, at seven-day intervals, against B. brassicae on cabbage plants, reduced aphid numbers by 73%. In a second field experiment with B. brassicae, M. persicae, and N. ribisnigri, Botanigard ES reduced populations of B. brassicae and N. ribisnigri but there was no significant effect on M. persicae.


2013 ◽  
Vol 1 (1) ◽  
pp. 7 ◽  
Author(s):  
Casimiro S. Munita ◽  
Lúcia P. Barroso ◽  
Paulo M.S. Oliveira

Several analytical techniques are often used in archaeometric studies, and when used in combination, these techniques can be used to assess 30 or more elements. Multivariate statistical methods are frequently used to interpret archaeometric data, but their applications can be problematic or difficult to interpret due to the large number of variables. In general, the analyst first measures several variables, many of which may be found to be uninformative, this is naturally very time consuming and expensive. In subsequent studies the analyst may wish to measure fewer variables while attempting to minimize the loss of essential information. Such multidimensional data sets must be closely examined to draw useful information. This paper aims to describe and illustrate a stopping rule for the identification of redundant variables, and the selection of variables subsets, preserving multivariate data structure using Procrustes analysis, selecting those variables that are in some senses adequate for discrimination purposes. We provide an illustrative example of the procedure using a data set of 40 samples in which were determined the concentration of As, Ce, Cr, Eu, Fe, Hf, La, Na, Nd, Sc, Sm, Th, and U obtained via instrumental neutron activation analysis (INAA) on archaeological ceramic samples. The results showed that for this data set, only eight variables (As, Cr, Fe, Hf, La, Nd, Sm, and Th) are required to interpret the data without substantial loss information.


2019 ◽  
Vol 2 (1) ◽  
pp. 223-251 ◽  
Author(s):  
Francesco Cutrale ◽  
Scott E. Fraser ◽  
Le A. Trinh

Embryonic development is highly complex and dynamic, requiring the coordination of numerous molecular and cellular events at precise times and places. Advances in imaging technology have made it possible to follow developmental processes at cellular, tissue, and organ levels over time as they take place in the intact embryo. Parallel innovations of in vivo probes permit imaging to report on molecular, physiological, and anatomical events of embryogenesis, but the resulting multidimensional data sets pose significant challenges for extracting knowledge. In this review, we discuss recent and emerging advances in imaging technologies, in vivo labeling, and data processing that offer the greatest potential for jointly deciphering the intricate cellular dynamics and the underlying molecular mechanisms. Our discussion of the emerging area of “image-omics” highlights both the challenges of data analysis and the promise of more fully embracing computation and data science for rapidly advancing our understanding of biology.


Sign in / Sign up

Export Citation Format

Share Document