scholarly journals A sexing protocol for wild ruminants based on PCR amplification of amelogenin genes AMELX and AMELY (short communication)

2007 ◽  
Vol 50 (5) ◽  
pp. 442-446 ◽  
Author(s):  
G. Pajares ◽  
I. Álvarez ◽  
I. Fernández ◽  
L. Pérez-Pardal ◽  
F. Goyache ◽  
...  

Abstract. Based on the sequences of the bovine amelogenin genes, we have designed a protocol for sexing DNA samples of wild ruminants. Basically the protocol consists on the co-amplification of two specific fragments, one from Y-chromosome and one for the X chromosome, making the use of a PCR control unnecessary. It has been demonstrated to be useful for sex identification in a total of 164 samples belonging to six different wild ruminant species. We propose adding to the census procedure commonly based in faecal groups counting, the faecal sampling and application of the protocol design here, to estimate the sex ratio.

2019 ◽  
Author(s):  
Yehonatan Alcalay ◽  
Silke Fuchs ◽  
Roberto Galizi ◽  
Federica Bernardini ◽  
Roya Elaine Haghighat-Khah ◽  
...  

AbstractSynthetic sex-ratio distorters based on X-chromosome shredding are predicted to be more efficient than sterile males for population suppression of malaria mosquitoes using genetic control. X-chromosome shredding operates through the targeted elimination of X-chromosome-bearing gametes during male spermatogenesis, resulting in males that have a high fraction of male offspring. Strains harboring autosomal constructs containing a modified endonuclease I-PpoI have now been developed in the malaria mosquito Anopheles gambiae, resulting in strong sex-ratio distortion towards males. Data are being gathered for these strains for submission of regulatory dossiers for contained use and subsequent field release in West Africa. Since autosomal X-shredders are transmitted in a Mendelian fashion and can be selected against their frequency in the population is expected to decline once releases are halted. However, any unintended transfer of the X-shredder to the Y-chromosome could theoretically change these dynamics: This could lead to 100% transmission of the newly Y-linked X-shredder to the predominant male-biased offspring and its insulation from negative selection in females, resulting in its potential spread in the population and ultimately to suppression. Here, we analyze plausible mechanisms whereby an autosomal X-shredder could become linked to the Y-chromosome after release and provide data regarding its potential for activity should it become linked to the Y-chromosome. Our results strongly suggest that Y-chromosome linkage through remobilization of the transposon used for the initial genetic transformation is unlikely, and that, in the unexpected event that the X-shredder becomes linked to the Y-chromosome, expression and activity of the X-shredder would likely be inhibited by meiotic sex chromosome inactivation. We conclude that a functioning X-shredding-based Y-drive resulting from a naturally induced transposition or translocation of the transgene onto the Y-chromosome is unlikely.


2008 ◽  
Vol 53 (No. 5) ◽  
pp. 250-254 ◽  
Author(s):  
A. Kozubska-Sobocinska ◽  
B. Rejduch

The aim of the study was to identify heterosomes in the semen of three Romanov rams – carriers of leukocyte chimerism (FISH technique) and to determine the proportions between spermatozoa with X and Y chromosomes. The choice of bovine probes for hybridization with ram heterosomes was dictated by genetic conservatism of bovine and ovine heterosomes. The ratio between spermatozoa with a yellow fluorescent signal containing the X chromosome in the haploid set and spermatozoa with a red-purple signal indicating the presence of the Y chromosome, taking into account spermatozoa with no signal, was 52%:43%:5% in ram No. PL100006077676; 47%:44%:9% in ram No. PL100006078031; and 48%:46%:6% in ram No. PL100006078895. The results obtained lead us to conclude that the 54,XX/54,XY chimerism has no effect on sex ratio in offspring.


2006 ◽  
Vol 82 (24) ◽  
pp. 12422-12431 ◽  
Author(s):  
Konstantin P. Alekseev ◽  
Anastasia N. Vlasova ◽  
Kwonil Jung ◽  
Mustafa Hasoksuz ◽  
Xinsheng Zhang ◽  
...  

ABSTRACT We sequenced and analyzed the full-length genomes of four coronaviruses (CoVs), each from a distinct wild-ruminant species in Ohio: sambar deer (Cervus unicolor), a waterbuck (Kobus ellipsiprymnus), a sable antelope (Hippotragus niger), and a white-tailed deer (Odocoileus virginianus). The fecal samples from the sambar deer, the waterbuck, and the white-tailed deer were collected during winter dysentery outbreaks and sporadic diarrhea cases in 1993 and 1994 (H. Tsunemitsu, Z. R. el-Kanawati, D. R. Smith, H. H. Reed, and L. J. Saif, J. Clin. Microbiol. 33:3264-3269, 1995). A fecal sample from a sable antelope was collected in 2003 from an Ohio wild-animal habitat during the same outbreak when a bovine-like CoV from a giraffe (GiCoV) was isolated (M. Hasoksuz, K. Alekseev, A. Vlasova, X. Zhang, D. Spiro, R. Halpin, S. Wang, E. Ghedin, and L. J. Saif, J. Virol. 81:4981-4990, 2007). For two of the CoVs (sambar deer and waterbuck), complete genomes from both the cell culture-adapted and gnotobiotic-calf-passaged strains were also sequenced and analyzed. Phylogenetically, wild-ruminant CoVs belong to group 2a CoVs, with the closest relatedness to recent bovine CoV (BCoV) strains. High nucleotide identities (99.4 to 99.6%) among the wild-ruminant strains and recent BCoV strains (BCoV-LUN and BCoV-ENT, isolated in 1998) further confirm the close relatedness. Comparative genetic analysis of CoVs of captive wild ruminants with BCoV strains suggests that no specific genomic markers are present that allow discrimination between the bovine strains and bovine-like CoVs from captive wild ruminants; furthermore, no specific genetic markers were identified that defined cell cultured or calf-passaged strains or the host origin of strains. The results of this study confirm prior reports of biologic and antigenic similarities between bovine and wild-ruminant CoVs and suggest that cattle may be reservoirs for CoVs that infect captive wild ruminants or vice versa and that these CoVs may represent host range variants of an ancestral CoV.


Genetics ◽  
1987 ◽  
Vol 116 (2) ◽  
pp. 275-283
Author(s):  
Gary Cobbs

ABSTRACT The msr trait of Drosophila pseudoobscura occurs when "sex-ratio" males produce a very high frequency of null-X sperm which give rise to sterile male (X/O) progeny. The trait involves dramatically lowered fecundity due to spermiogenic failure. The msr trait is multigenic and the genes are located on autosomes II, III and IV of the L116 laboratory stock. This stock also carries genes on the Y chromosome that lower the level of msr. When the genes on the L116 autosomes are present together or with those on the Y chromosome of other stocks, they interact cooperatively to produce very high levels of msr. The msr genes require the presence of a sex-ratio X chromosome to have any effect and thus may be regarded as modifiers of the "sex-ratio" phenotype. Crosses show that the genes causing msr are primarily recessive but have some expression when heterozygous. Sex chromosome nondisjunction is proposed as the mechanism underlying the msr trait.


Genetics ◽  
1972 ◽  
Vol 71 (4) ◽  
pp. 597-606
Author(s):  
Robert A Voelker

ABSTRACT In D. affinis "sex ratio" (sr), a form of meiotic drive characterized by the production of mostly or only female progeny by certain males, is associated with two different X chromosome sequences, XS-I XL-II and XS-II XL-IV. The behavior of the two sequences differed, depending on the Y chromosome constitution, being either Y  L or 0. Males with sequence XS-II XL-IV and Y  L produced progenies with nearly normal sex ratios; males with the same X chromosome sequence but in the absence of a Y chromosome in some cases gave progenies with nearly normal sex ratios but in other cases gave progenies which tended toward phenotypic sr. Males with sequence XS-I XL-II and Y  L gave progenies which were characteristically sr (0.97–0.98 females); in the absence of a Y chromosome males with this sequence produced progenies which were virtually all-male. This latter finding is presumably identical to Novitski's (1947) "male sex ratio" (msr). The interpretation offered here attributes msr to an interaction between sr sequence XS-I XL-II and the 0 condition. A general consideration of the available data on sr in D. affinis is presented.


Author(s):  
Roberta Bergero ◽  
Jim Gardner ◽  
Deborah Charlesworth
Keyword(s):  

2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Barbara Moroni ◽  
Samer Angelone ◽  
Jesús M. Pérez ◽  
Anna Rita Molinar Min ◽  
Mario Pasquetti ◽  
...  

Abstract Background In Spain, sarcoptic mange was first described in native wildlife in 1987 in Cazorla Natural Park, causing the death of nearly 95% of the local native population of Iberian ibex (Capra pyrenaica). Since then, additional outbreaks have been identified in several populations of ibex and other wild ungulate species throughout the country. Although the first epizootic outbreak in wildlife was attributed to the introduction of an infected herd of domestic goats, the origin and the cause of its persistence remain unclear. The main aims of this study are to understand (i) the number of Sarcoptes scabiei “strains” circulating in wild ruminant populations in Spain, and (ii) the molecular epidemiological relationships between S. scabiei and its hosts. Methods Ten Sarcoptes microsatellite markers were used to characterize the genetic structure of 266 mites obtained from skin scrapings of 121 mangy wild ruminants between 2011 and 2019 from 11 areas in Spain. Results Seventy-three different alleles and 37 private alleles were detected. The results of this study show the existence of three genetic strains of S. scabiei in the wild ruminant populations investigated. While two genetic clusters of S. scabiei were host- and geography-related, one cluster included multi-host mites deriving from geographically distant populations. Conclusions The molecular epidemiological study of S. scabiei in wild ruminants in Spain indicates that the spreading and persistence of the parasite may be conditioned by host species community composition and the permissiveness of each host population/community to the circulation of individual “strains,” among other factors. Wildlife–livestock interactions and the role of human-driven introduction or trade of wild and domestic animals should be better investigated to prevent further spread of sarcoptic mange in as yet unaffected natural areas of the Iberian Peninsula.


Genetics ◽  
2002 ◽  
Vol 160 (4) ◽  
pp. 1721-1731 ◽  
Author(s):  
Jesse E Taylor ◽  
John Jaenike

AbstractSeveral empirical studies of sperm competition in populations polymorphic for a driving X chromosome have revealed that Sex-ratio males (those carrying a driving X) are at a disadvantage relative to Standard males. Because the frequency of the driving X chromosome determines the population-level sex ratio and thus alters male and female mating rates, the evolutionary consequences of sperm competition for sex chromosome meiotic drive are subtle. As the SR allele increases in frequency, the ratio of females to males also increases, causing an increase in the male mating rate and a decrease in the female mating rate. While the former change may exacerbate the disadvantage of Sex-ratio males during sperm competition, the latter change decreases the incidence of sperm competition within the population. We analyze a model of the effects of sperm competition on a driving X chromosome and show that these opposing trends in male and female mating rates can result in two coexisting locally stable equilibria, one corresponding to a balanced polymorphism of the SR and ST alleles and the second to fixation of the ST allele. Stochastic fluctuations of either the population sex ratio or the SR frequency can then drive the population away from the balanced polymorphism and into the basin of attraction for the second equilibrium, resulting in fixation of the SR allele and extinction of the population.


Chromosoma ◽  
2015 ◽  
Vol 125 (2) ◽  
pp. 177-188
Author(s):  
Fanny Decarpentrie ◽  
Obah A. Ojarikre ◽  
Michael J. Mitchell ◽  
Paul S. Burgoyne

Genetics ◽  
2021 ◽  
Author(s):  
Xingyong Liu ◽  
Shengfei Dai ◽  
Jiahong Wu ◽  
Xueyan Wei ◽  
Xin Zhou ◽  
...  

Abstract Duplicates of amh are crucial for fish sex determination and differentiation. In Nile tilapia, unlike in other teleosts, amh is located on X chromosome. The Y chromosome amh (amh△-y) is mutated with 5 bp insertion and 233 bp deletion in the coding sequence, and tandem duplicate of amh on Y chromosome (amhy) has been identified as the sex determiner. However, the expression of amh, amh△-y and amhy, their roles in germ cell proliferation and the molecular mechanism of how amhy determines sex is still unclear. In this study, expression and functions of each duplicate were analyzed. Sex reversal occurred only when amhy was mutated as revealed by single, double and triple mutation of the three duplicates in XY fish. Homozygous mutation of amhy in YY fish also resulted in sex reversal. Earlier and higher expression of amhy/Amhy was observed in XY gonads compared with amh/Amh during sex determination. Amhy could inhibit the transcription of cyp19a1a through Amhr2/Smads signaling. Loss of cyp19a1a rescued the sex reversal phenotype in XY fish with amhy mutation. Interestingly, mutation of both amh and amhy in XY fish or homozygous mutation of amhy in YY fish resulted in infertile females with significantly increased germ cell proliferation. Taken together, these results indicated that up-regulation of amhy during the critical period of sex determination makes it the sex-determining gene, and it functions through repressing cyp19a1a expression via Amhr2/Smads signaling pathway. Amh retained its function in controlling germ cell proliferation as reported in other teleosts, while amh△-y was nonfunctionalized.


Sign in / Sign up

Export Citation Format

Share Document