scholarly journals Polymorphisms of the kappa casein (<i>CSN</i>3) gene and inference of its variants in water buffalo (<i>Bubalus bubalis</i>)

2019 ◽  
Vol 62 (2) ◽  
pp. 585-596 ◽  
Author(s):  
Xinyang Fan ◽  
Zifang Zhang ◽  
Lihua Qiu ◽  
Yongyun Zhang ◽  
Yongwang Miao

Abstract. Kappa casein plays a crucial role in the formation of stable casein micelles and has a key influence on milk-clotting properties. However, current understanding of buffalo CSN3 gene polymorphisms is not sufficient. In this study, the polymorphisms in the complete coding sequence (CDS) of the buffalo CSN3 were detected using PCR product direct sequencing. The CDS of CSN3 for river and swamp buffalo was the same in length, which contained an open reading frame of 573 nucleotides encoding a peptide containing 190 amino acid residues. A total of eight single nucleotide polymorphisms (SNPs) was identified in two types of buffalo. Among them, c.86C>T, c.252G>C, c.445G>A, c.467C>T and c.516A>C were non-synonymous, which leads to p.Pro8Leu, p.Lys63Asn, p.Val128Ile, p.Thr135Ile and p.Glu151Asp substitutions in buffalo kappa casein (κ-CN), respectively. The substitution of p.Thr135Ile may exert a vital effect on the function of buffalo κ-CN. Eleven haplotypes were defined based on the SNPs found in buffalo, and accordingly, seven protein variants and four synonymous variants of buffalo κ-CN were inferred, called variants A, B, B1, C, C1, C2, D, E, F, F1 and G. The variants observed in water buffalo did not exist in the Bos genus. In addition, 14 amino acid differential sites of κ-CN between buffalo and the Bos genus were identified, of which 3 were located at glycosylation sites (80S, 96T, 141S) and 4 at phosphorylation sites (19S, 80S, 96T, 141S). It is speculated that they may lead to differences in the physicochemical properties of κ-CN between buffalo and the Bos genus. This study will lay a foundation for exploring the association between the variation in the CSN3 gene and the lactation traits of buffalo.

1985 ◽  
Vol 5 (10) ◽  
pp. 2684-2696
Author(s):  
D H Smith ◽  
D M Kegler ◽  
E B Ziff

We transiently expressed adenovirus type C E1a proteins in wild-type or mutant form from plasmid vectors which have different combinations of E1a and simian virus 40 enhancer elements and which contain the DNA replication origin of SV40 and can replicate in COS 7 cells. We measured the levels of E1a mRNA encoded by the vectors and the transition regulation properties of the protein products. Three vectors encoded equivalent levels of E1a mRNA in COS 7 cells: (i) a plasmid encoding the wt 289-amino acid E1a protein (this complemented the E1a deletion mutant dl312 for early region E2a expression under both replicative and nonreplicative conditions); (ii) a vector for the wt 243-amino acid E1a protein (this complemented dl312 weakly and only under conditions of high multiplicities of dl312); (iii) a mutant, pSVXL105, in which amino acid residues-38 through 44 of the 289-amino acid E1a protein (which includes two highly conserved residues) are replaced by 3 novel amino acids (this also complemented dl312 efficiently). A fourth vector, mutant pSVXL3 with which linker substitution shifts the reading frame to encode a truncated 70-amino acid fragment from the amino terminus of the 289-amino acid protein, was unable to complement dl312. Surprisingly, pSVXL3 overexpressed E1a mRNA approximately 30-fold in COS 7 cells in comparison with the other vectors. The pSVXL3 overexpression could be reversed by cotransfection with a wt E1a vector. We suggest that wt E1a proteins regulate the levels of their own mRNAs through the recently described transcription repression functions of the 289- and 243-amino acid E1a protein products and that pSVXL3 fails to autoregulate negatively.


1995 ◽  
Vol 15 (10) ◽  
pp. 5329-5338 ◽  
Author(s):  
K Onel ◽  
M P Thelen ◽  
D O Ferguson ◽  
R L Bennett ◽  
W K Holloman

The REC1 gene of Ustilago maydis has an uninterrupted open reading frame, predicted from the genomic sequence to encode a protein of 522 amino acid residues. Nevertheless, an intron is present, and functional activity of the gene in mitotic cells requires an RNA processing event to remove the intron. This results in a change in reading frame and production of a protein of 463 amino acid residues. The 3'-->5' exonuclease activity of proteins derived from the REC1 genomic open reading frame, the intronless open reading frame, and several mutants was investigated. The mutants included a series of deletions constructed by removing restriction fragments at the 3' end of the cloned REC1 gene and a set of mutant alleles previously isolated in screens for radiation sensitivity. All of these proteins were overproduced in Escherichia coli as N-terminal polyhistidine-tagged fusions that were subsequently purified by immobilized metal affinity chromatography and assayed for 3'-->5' exonuclease activity. The results indicated that elimination of the C-terminal third of the protein did not result in a serious reduction in 3'-->5' exonuclease activity, but deletion into the midsection caused a severe loss of activity. The biological activity of the rec1-1 allele, which encodes a truncated polypeptide with full 3'-->5' exonuclease activity, and the rec1-5 allele, which encodes a more severely truncated polypeptide with no exonuclease activity, was investigated. The two mutants were equally sensitive to the lethal effect of UV light, but the spontaneous mutation rate was elevated 10-fold over the wild-type rate in the rec1-1 mutant and 100-fold in the rec1-5 mutant. The elevated spontaneous mutation rate correlated with the ablation of exonuclease activity, but the radiation sensitivity did not. These results indicate that the C-terminal portion of the Rec1 protein is not essential for exonuclease activity but is crucial in the role of REC1 in DNA damage repair.


1991 ◽  
Vol 99 (4) ◽  
pp. 711-719
Author(s):  
K.L. O'Donnell ◽  
A.H. Osmani ◽  
S.A. Osmani ◽  
N.R. Morris

The recessive, temperature-sensitive bimA1 mutation of Aspergillus nidulans blocks nuclei in metaphase at restrictive temperature. To determine whether the bimA product is essential, integrative transformation was used to create a mutation in the bimA gene. The mutation was maintained in a heterokaryon and the phenotype of spores produced by the heterokaryon was analyzed. Molecular disruption of the wild-type bimA gene is recessive in the heterokaryon and causes a metaphase block, demonstrating that bimA is an essential gene for mitosis. bimA was cloned by DNA-mediated complementation of its mutant phenotype at restrictive temperature, and the nucleotide sequence of a full-length cDNA was determined. A single large open reading frame was identified in the cDNA sequence, which predicts a protein containing 806 amino acid residues that is related (30.4% identity) to the Schizosaccharomyces pombe nuc2+ gene product, which also is required for completion of mitosis. The sequence of the bimA gene indicates that it is a member of a family of mostly nuclear proteins that contain a degenerate 34 amino acid repeat, the TPR (tetratricopeptide repeat) gene family.


1995 ◽  
Vol 7 (5) ◽  
pp. 1209 ◽  
Author(s):  
SK Kolluri ◽  
R Kaul ◽  
K Banerjee ◽  
SK Gupta

The cDNA encoding bonnet monkey zona pellucida ZP3 from bonnet ovary has been amplified by polymerase chain reaction. The ZP3 gene has an open reading frame of 1272 nucleotides encoding a polypeptide of 424 amino acid residues which shares 93.9% overall identity with human ZP3. Bonnet ZP3 has four potential attachment sites for N-linked sugar chains which are also conserved in human ZP3. Bonnet ZP3 has 14 cysteine residues compared with 15 in human ZP3. The highest disparity between these molecules was restricted to a domain represented by amino acid residues 370-398. These results have important implications for the use of bonnet monkey as an animal model for evaluation and development of contraceptive vaccine based on ZP3 for human use.


1998 ◽  
Vol 64 (2) ◽  
pp. 549-554 ◽  
Author(s):  
Ji-Quan Liu ◽  
Saeko Ito ◽  
Tohru Dairi ◽  
Nobuya Itoh ◽  
Michihiko Kataoka ◽  
...  

ABSTRACT A low-specificity l-threonine aldolase (l-TA) gene from Pseudomonas sp. strain NCIMB 10558 was cloned and sequenced. The gene contains an open reading frame consisting of 1,041 nucleotides corresponding to 346 amino acid residues. The gene was overexpressed in Escherichia colicells, and the recombinant enzyme was purified and characterized. The enzyme, requiring pyridoxal 5′-phosphate as a coenzyme, is strictlyl specific at the α position, whereas it cannot distinguish between threo and erythro forms at the β position. In addition to threonine, the enzyme also acts on various other l-β-hydroxy-α-amino acids, includingl-β-3,4-dihydroxyphenylserine,l-β-3,4-methylenedioxyphenylserine, andl-β-phenylserine. The predicted amino acid sequence displayed less than 20% identity with those of low-specificityl-TA from Saccharomyces cerevisiae,l-allo-threonine aldolase from Aeromonas jandaei, and four relevant hypothetical proteins from other microorganisms. However, lysine 207 of low-specificity l-TA from Pseudomonas sp. strain NCIMB 10558 was found to be completely conserved in these proteins. Site-directed mutagenesis experiments showed that substitution of Lys207 with Ala or Arg resulted in a significant loss of enzyme activity, with the corresponding disappearance of the absorption maximum at 420 nm. Thus, Lys207 of thel-TA probably functions as an essential catalytic residue, forming an internal Schiff base with the pyridoxal 5′-phosphate of the enzyme to catalyze the reversible aldol reaction.


2014 ◽  
Vol 998-999 ◽  
pp. 210-213
Author(s):  
Chun Ling Zhao ◽  
Wen Jing Yu ◽  
Ji Yu Ju

cDNA of a novel protease, designated as AFEI, was cloned from digestive tract of Arenicola cristata by RACE. The cDNA of AFEIcomprised 897bp and an open reading frame that encoded polypeptides of 264 amino acid residues. AFEIshowed similarity to serine protease family and contained the conserved catalytic amino acid residues. The gene encoding the active form of AFEIwas expressed in E.coli and the purified recombinant protein could dissolve an artificial fibrin plate with plasminogen, which indicated the recombinant protein might be a plasminogen activator for thrombosis therapy.


1998 ◽  
Vol 88 (11) ◽  
pp. 1174-1178 ◽  
Author(s):  
Drake C. Stenger

Cloned genomes of the CFH, Worland, and Cal/Logan strains of beet curly top virus (BCTV) served as helper viruses to trans-replicate defective (D) DNAs that are incapable of self-replication due to deletions within the C1 open reading frame encoding the replication initiator (Rep) protein. The Logan Rep protein could trans-replicate a Logan-derived D DNA in a transient replication assay conducted in Nicotiana benthamiana leaf disks. However, the Logan Rep protein was unable to trans-replicate D DNAs derived from the CFH or Worland strains. In contrast, the Rep proteins of the CFH and Worland strains could trans-replicate CFH or Worland D DNAs, but not a Logan D DNA. These results indicate that the cis- and trans-acting replication specificity elements of the CFH and Worland strains are compatible and that the three strains of BCTV may be divided into two groupings based upon replication specificity determinants. A comparison of amino acid sequences of the Rep protein for the three BCTV strains suggests that the trans-acting replication specificity element may reside in one or more of 12 amino acid residues that are identical; in two amino acid residues that are chemically similar among the CFH and Worland Rep proteins, yet are different in the Logan Rep protein; or in both. Properties including replication specificity, nucleotide sequence identity, and symptom expression were used as criteria to propose separate species designations for each of the three BCTV strains. In this proposal, the Cal/ Logan strain retains the name BCTV, CFH and the closely related Iranian isolate are designated beet severe curly top virus, and Worland is designated beet mild curly top virus.


2016 ◽  
Vol 56 (10) ◽  
pp. 1579 ◽  
Author(s):  
X. P. An ◽  
J. X. Hou ◽  
T. Y. Gao ◽  
B. Y. Cao

The full coding region of KIT mRNA was cloned from the caprine ovary. The results showed the caprine KIT cDNA (GenBank accession number KF364483) contained a 2925-bp open reading frame encoding a protein with 974 amino acid residues. BLAST analysis revealed that the caprine KIT protein had high similarity with that of four species: Ovis aries (99%), Bos taurus (99%), Sus scrofa (94%) and Homo sapiens (90%). The KIT mRNA expression pattern showed that KIT mRNA was expressed highly in kidney, ovary, uterus and breast. Two single nucleotide polymorphisms (g.88430T > A and g.120466G > A) in the caprine KIT gene were detected by PCR–restriction fragment length polymorphism (RFLP) and DNA sequencing in 735 goats of Xinong Saanen, Guanzhong and Boer breeds. The g.88430T > A mutation was a missense mutation (Tyr > Asn at position 409 amino acid of KIT). The association study has been done by jointly analysing all data in one analysis. The result showed that individuals with TT and TA genotypes had their litter size increased by 0.11 and 0.09, respectively, compared with those with AA genotype at the g.88430T > A locus for three goat breeds (P < 0.05). Further analysis revealed that combined genotype TTAA was better than the others for litter size in three goat breeds. Therefore, the biochemical and physiological functions, together with the results obtained in our investigation, suggest that the KIT gene could serve as a genetic marker for litter size in goat breeding.


2009 ◽  
Vol 191 (17) ◽  
pp. 5553-5562 ◽  
Author(s):  
Dominik Schilling ◽  
Ulrike Gerischer

ABSTRACT In gammaproteobacteria the Hfq protein shows a great variation in size, especially in its C-terminal part. Extremely large Hfq proteins consisting of almost 200 amino acid residues and more are found within the gammaproteobacterial family Moraxellaceae. The difference in size compared to other Hfq proteins is due to a glycine-rich domain near the C-terminal end of the protein. Acinetobacter baylyi, a nonpathogenic soil bacterium and member of the Moraxellaceae encodes a large 174-amino-acid Hfq homologue containing the unique and repetitive amino acid pattern GGGFGGQ within the glycine-rich domain. Despite the presence of the C-terminal extension, A. baylyi Hfq complemented an Escherichia coli hfq mutant in vivo. By using polyclonal anti-Hfq antibodies, we detected the large A. baylyi Hfq that corresponds to its annotated size indicating the expression and stability of the full protein. Deletion of the complete A. baylyi hfq open reading frame resulted in severe reduction of growth. In addition, a deletion or overexpression of Hfq was accompanied by the loss of cell chain assembly. The glycine-rich domain was not responsible for growth and cell phenotypes. hfq gene localization in A. baylyi is strictly conserved within the mutL-miaA-hfq operon, and we show that hfq expression starts within the preceding miaA gene or further upstream.


1999 ◽  
Vol 65 (7) ◽  
pp. 3001-3007 ◽  
Author(s):  
Frederic Chavagnat ◽  
Michael G. Casey ◽  
Jacques Meyer

ABSTRACT The general aminopeptidase PepN from Streptococcus thermophilus A was purified to protein homogeneity by hydroxyapatite, anion-exchange, and gel filtration chromatographies. The PepN enzyme was estimated to be a monomer of 95 kDa, with maximal activity on N-Lys–7-amino-4-methylcoumarin at pH 7 and 37°C. It was strongly inhibited by metal chelating agents, suggesting that it is a metallopeptidase. The activity was greatly restored by the bivalent cations Co2+, Zn2+, and Mn2+. Except for proline, glycine, and acidic amino acid residues, PepN has a broad specificity on the N-terminal amino acid of small peptides, but no significant endopeptidase activity has been detected. The N-terminal and short internal amino acid sequences of purified PepN were determined. By using synthetic primers and a battery of PCR techniques, the pepN gene was amplified, subcloned, and further sequenced, revealing an open reading frame of 2,541 nucleotides encoding a protein of 847 amino acids with a molecular weight of 96,252. Amino acid sequence analysis of thepepN gene translation product shows high homology with other PepN enzymes from lactic acid bacteria and exhibits the signature sequence of the zinc metallopeptidase family. The pepN gene was cloned in a T7 promoter-based expression plasmid and the 452-fold overproduced PepN enzyme was purified to homogeneity from the periplasmic extract of the host Escherichia coli strain. The overproduced enzyme showed the same catalytic characteristics as the wild-type enzyme.


Sign in / Sign up

Export Citation Format

Share Document