scholarly journals Validation of an hourly resolved global aerosol model in answer to solar electricity generation information needs

2013 ◽  
Vol 13 (7) ◽  
pp. 3777-3791 ◽  
Author(s):  
M. Schroedter-Homscheidt ◽  
A. Oumbe

Abstract. Solar energy applications need global aerosol optical depth (AOD) information to derive historic surface solar irradiance databases from geostationary meteorological satellites reaching back to the 1980's. This paper validates the MATCH/DLR model originating in the climate community against AERONET ground measurements. Hourly or daily mean AOD model output is evaluated individually for all stations in Europe, Africa and the Middle East – an area highly interesting for solar energy applications being partly dominated by high aerosol loads. Overall, a bias of 0.02 and a root-mean-square error (RMSE) of 0.23 are found for daily mean AOD values, while the RMSE increases to 0.28 for hourly mean AOD values. Large differences between various regions and stations are found providing a feedback loop for the aerosol modelling community. The difference in using daily means versus hourly resolved modelling with respect to hourly resolved observations is evaluated. Nowadays state-of-the-art in solar resource assessment relies on monthly turbidity or AOD climatologies while at least hourly resolved irradiance time series are needed by the solar sector. Therefore, the contribution of higher temporally modelled AOD is evaluated.

2012 ◽  
Vol 12 (12) ◽  
pp. 31917-31953
Author(s):  
M. Schroedter-Homscheidt ◽  
A. Oumbe

Abstract. Solar energy applications need global aerosol optical depth (AOD) information to derive historic surface solar irradiance databases from geostationary meteorological satellites reaching back to the 1980's. This paper validates the MATCH/DLR model originating in the climate community against AERONET ground measurements. Hourly or daily mean AOD model output is evaluated individually for all stations in Europe, Africa and the Middle East – an area highly interesting for solar energy applications being partly dominated by high aerosol loads. Overall, a bias of 0.02 and a root mean square error of 0.23 are found for daily mean AOD values, while the RMSE increases to 0.28 for hourly mean AOD values. Large differences between various regions and stations are found providing a feedback loop for the aerosol modelling community. The difference in using daily means versus hourly resolved modelling with respect to hourly resolved observations is evaluated. Nowadays state of the art in solar resource assessment relies on monthly turbidity or AOD climatologies while at least hourly resolved irradiance time series are needed by the solar sector. Therefore, the contribution of higher temporally modelled AOD is evaluated.


2021 ◽  
Author(s):  
Manajit Sengupta ◽  
Aron Habte ◽  
Stefan Wilbert ◽  
Christian Gueymard ◽  
Jan Remund

2021 ◽  
Author(s):  
Nicolas Chouleur ◽  
Bianca Morandi ◽  
Shane Martin ◽  
Stefan Mau

<p>Accurate solar resource assessments are essential to project a solar photovoltaic (PV) plant’s energy production – and ultimately forecast its revenue.</p><p>Solar resource assessments are the bedrock of the ‘Revenue’ line in PV financial models. In today’s competitive financing environment, the assumptions underlying solar resource assessment often have make-or-break impact on project valuations. It’s critical that investors trust the numbers provided.</p><p>To quantify solar resource, industry typically compares different irradiation databases derived from multiple physical sources – whether measurements or satellite images. There is always some level of scatter; in Western Europe this is often around 3%, after excluding outliers.  Satellite database are never as good as accurate ground measurement.  And the rather narrow variation observed is due to past calibration of satellite derived model with data from weather stations.  The reality can be different when it comes to Ireland. </p><p>The solar sector is currently experiencing a rapid development in the Republic of Ireland, making the yield assessment and by extension the solar resource estimation key for the bankability of the projects.</p><p>The aim of our work was the validate the accuracy of different databases, available in Ireland.</p><p>The first step of this analysis will be to qualify our data sources. Everoze and Brightwind have access to measurement campaigns from multiple solar projects in Ireland. All the gathered dataset will be processed, applying state of the art quality control, to retain only trustable information.  The quality check will also include the sensors themselves, with a verification of the accuracy and calibration certificates of the different pieces of equipment.</p><p>In a second step, the qualified datasets will be used to compare satellite derived data.  We plan to use CAMS, SolarGIS and Meteonorm.  The intention is to categorise our results in regions, classified based on the difference in annual irradiation between different databases in order to reduce uncertainty – and ultimately boost investor confidence in energy yield assessments.</p>


2017 ◽  
Author(s):  
Manajit Sengupta ◽  
Aron Habte ◽  
Christian Gueymard ◽  
Stefan Wilbert ◽  
Dave Renne

Author(s):  
B. Khadambari ◽  
S. S. Bhattacharya

Solar has become one of the fastest growing renewable energy sources. With the push towards sustainability it is an excellent solution to resolve the issue of our diminishing finite resources. Alternative photovoltaic systems are of much importance to utilize solar energy efficiently. The Cu-chalcopyrite compounds CuInS2 and CuInSe2 and their alloys provide absorber material of high absorption coefficients of the order of 105 cm-1. Cu2ZnSnS4 (CZTS) is more promising material for photovoltaic applications as Zn and Sn are abundant materials of earth’s crust. Further, the preparation of CZTS-ink facilitates the production of flexible solar cells. The device can be designed with Al doped ZnO as the front contact, n-type window layer (e.g. intrinsic ZnO); an n-type thin film buffer layer (e.g. CdS) and a p-type CZTS absorber layer with Molybdenum (Mo) substrate as back contact. In this study, CZTS films were synthesized by a non-vaccum solvent based process technique from a molecular-ink using a non toxic eco-friendly solvent dimethyl sulfoxide (DMSO). The deposited CZTS films were optimized and characterized by XRD, UV-visible spectroscopy and SEM.


AIP Advances ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 055214
Author(s):  
A. Kosinska ◽  
B. V. Balakin ◽  
P. Kosinski

Sign in / Sign up

Export Citation Format

Share Document