scholarly journals A three-dimensional variational data assimilation system for multiple aerosol species with WRF/Chem and an application to PM<sub>2.5</sub> prediction

2013 ◽  
Vol 13 (8) ◽  
pp. 4265-4278 ◽  
Author(s):  
Z. Li ◽  
Z. Zang ◽  
Q. B. Li ◽  
Y. Chao ◽  
D. Chen ◽  
...  

Abstract. A three-dimensional variational data assimilation (3-DVAR) algorithm for aerosols in a WRF/Chem model is presented. The WRF/Chem model uses the MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) scheme, which explicitly treats eight major species (elemental/black carbon, organic carbon, nitrate, sulfate, chloride, ammonium, sodium and the sum of other inorganic, inert mineral and metal species) and represents size distributions using a sectional method with four size bins. The 3-DVAR scheme is formulated to take advantage of the MOSAIC scheme in providing comprehensive analyses of species concentrations and size distributions. To treat the large number of state variables associated with the MOSAIC scheme, this 3-DVAR algorithm first determines the analysis increments of the total mass concentrations of the eight species, defined as the sum of the mass concentrations across all size bins, and then distributes the analysis increments over four size bins according to the background error variances. The number concentrations for each size bin are adjusted based on the ratios between the mass and number concentrations of the background state. Additional flexibility is incorporated to further lump the eight mass concentrations, and five lumped species are used in the application presented. The system is evaluated using the analysis and prediction of PM2.5 in the Los Angeles basin during the CalNex 2010 field experiment, with assimilation of surface PM2.5 and speciated concentration observations. The results demonstrate that the data assimilation significantly reduces the errors in comparison with a simulation without data assimilation and improved forecasts of the concentrations of PM2.5 as well as individual species for up to 24 h. Some implementation difficulties and limitations of the system are discussed.

2012 ◽  
Vol 12 (5) ◽  
pp. 13515-13552 ◽  
Author(s):  
Z. Li ◽  
Z. Zang ◽  
Q. B. Li ◽  
Y. Chao ◽  
D. Chen ◽  
...  

Abstract. A three-dimensional variational data assimilation (3-DVAR) algorithm for aerosols in a WRF/Chem model is presented. The WRF/Chem model uses the MOSAIC (Model for Simulating Aerosol Interactions and Chemistry) scheme, which explicitly treats eight major species (elemental/black carbon, organic carbon, nitrate, sulfate, chloride, ammonium, sodium, and the sum of other inorganic, inert mineral and metal species) and represents size distributions using a sectional method with four size bins. The 3-DVAR scheme is formulated to take advantage of the MOSAIC scheme in providing comprehensive analyses of specie concentrations and size distributions. To treat the large number of state variables associated with the MOSAIC scheme, this 3-DVAR algorithm first determines the analysis increments of the total mass concentrations of the eight species, defined as the sum of the mass concentrations across all size bins, and then distributes the analysis increments over four size bins according to the background error variances. The number concentrations for each size bin are adjusted based on the ratios between the mass and number concentrations of the background state. This system has been applied to the analysis and prediction of PM2.5 in the Los Angeles basin during the CalNex 2010 field experiment, with assimilation of surface PM2.5 and speciated concentration observations. The results demonstrate that the data assimilation significantly reduces the errors in comparison with a down scaling simulation and improved forecasts of the concentrations of PM2.5 as well as individual species for up to 24 h. Some implementation difficulties and limitations of the system are also discussed.


2019 ◽  
Vol 12 (9) ◽  
pp. 4031-4051 ◽  
Author(s):  
Shizhang Wang ◽  
Zhiquan Liu

Abstract. A reflectivity forward operator and its associated tangent linear and adjoint operators (together named RadarVar) were developed for variational data assimilation (DA). RadarVar can analyze both rainwater and ice-phase species (snow and graupel) by directly assimilating radar reflectivity observations. The results of three-dimensional variational (3D-Var) DA experiments with a 3 km grid mesh setting of the Weather Research and Forecasting (WRF) model showed that RadarVar was effective at producing an analysis of reflectivity pattern and intensity similar to the observed data. Two to three outer loops with 50–100 iterations in each loop were needed to obtain a converged 3-D analysis of reflectivity, rainwater, snow, and graupel, including the melting layers with mixed-phase hydrometeors. It is shown that the deficiencies in the analysis using this operator, caused by the poor quality of the background fields and the use of the static background error covariance, can be partially resolved by using radar-retrieved hydrometeors in a preprocessing step and tuning the spatial correlation length scales of the background errors. The direct radar reflectivity assimilation using RadarVar also improved the short-term (2–5 h) precipitation forecasts compared to those of the experiment without DA.


2010 ◽  
Vol 138 (10) ◽  
pp. 3946-3966 ◽  
Author(s):  
Jean-François Caron ◽  
Luc Fillion

Abstract This study examines the modification to the balance properties of the analysis increments in a global three-dimensional variational data assimilation scheme when using flow-dependent background-error covariances derived from an operational ensemble Kalman filter instead of static homogenous and isotropic background-error covariances based on lagged forecast differences. It is shown that the degree of balance in the analysis increments is degraded when the former method is used. This change can be attributed in part to the reduced degree of rotational balance found in short-term ensemble Kalman filter perturbations as compared to lagged forecast differences based on longer-range forecasts. However, the use of a horizontal and vertical localization technique to increase the rank of the ensemble-based covariances are found to have a significant deleterious effect on the rotational balance with the largest detrimental impact coming from the vertical localization and affecting particularly the upper levels. The examination of the vertical motion part of the analysis increments revealed that the spatial covariance localization technique also produces unrealistic vertical structure of vertical motion increments with abnormally large increments near the surface. A comparison between the analysis increments from the ensemble Kalman filter and from the ensemble-based three-dimensional variational data assimilation (3D-Var) scheme showed that the balance characteristics of the analysis increments resulting from the two systems are very similar.


2013 ◽  
Vol 141 (8) ◽  
pp. 2721-2739 ◽  
Author(s):  
Chengsi Liu ◽  
Qingnong Xiao

Abstract A four-dimensional ensemble-based variational data assimilation (4DEnVar) algorithm proposed in Part I of the 4DEnVar series (denoted En4DVar in Part I, but here we refer to it as 4DEnVar according to WMO conference recommendation to differentiate it from En4DVar algorithm using adjoint model) uses a flow-dependent background error covariance calculated from ensemble forecasts and performs 4DVar optimization based on an incremental approach and a preconditioning algorithm. In Part II, the authors evaluated 4DEnVar with observing system simulation experiments (OSSEs) using the Advanced Research Weather Research and Forecasting Model (ARW-WRF, hereafter WRF). The current study extends the 4DEnVar to assimilate real observations for a cyclone in the Antarctic and the Southern Ocean in October 2007. The authors performed an intercomparison of four different WRF variational approaches for the case, including three-dimensional variational data assimilation (3DVar), first guess at the appropriate time (FGAT), and ensemble-based three-dimensional (En3DVar) and four-dimensional (4DEnVar) variational data assimilations. It is found that all data assimilation approaches produce positive impacts in this case. Applying the flow-dependent background error covariance in En3DVar and 4DEnVar yields forecast skills superior to those with the homogeneous and isotropic background error covariance in 3DVar and FGAT. In addition, the authors carried out FGAT and 4DEnVar 3-day cycling and 72-h forecasts. The results show that 4DEnVar produces a better performance in the cyclone prediction. The inflation factor on 4DEnVar can effectively improve the 4DEnVar analysis. The authors also conducted a short period (10-day lifetime of the cyclone in the domain) of analysis/forecast intercomparison experiments using 4DEnVar, FGAT, and 3DVar. The 4DEnVar scheme demonstrates overall superior and robust performance.


Author(s):  
Y. Hu ◽  
M. Zhang ◽  
Y. Liang ◽  
L. Ye ◽  
D. Zhao ◽  
...  

<p><strong>Abstract.</strong> Background error covariance (BEC) plays a key role in a variational data assimilation system. It determines variable analysis increments by spreading information from observation points. In order to test the influence of BEC on the GSI data assimilation and prediction of aerosol in Beijing-Tianjin-Hebei, a regional BEC is calculated using one month series of numerical forecast fields of November 2017 based on the National Meteorological Center (NMC) method, and compared with the global BEC.The results show that the standard deviation of stream function of the regional BEC is larger than that of the global BEC. And the horizontal length-scale of the regional BEC is smaller than that of the global BEC, white the vertical length-scale of the regional BEC is similar with that of the global BEC. The increments of the assimilation experiment with the regional BEC present more small scale information than that with the global BEC. The forecast skill of the experiment with the regional BEC is higher than that with the global BEC in the stations of Beijing, Tianjin, Chengde and Taiyuan, and the average root-mean-square errors (RMSE) reduces by over 13.4%.</p>


2016 ◽  
Vol 9 (8) ◽  
pp. 2623-2638 ◽  
Author(s):  
Zengliang Zang ◽  
Zilong Hao ◽  
Yi Li ◽  
Xiaobin Pan ◽  
Wei You ◽  
...  

Abstract. Balance constraints are important for background error covariance (BEC) in data assimilation to spread information between different variables and produce balance analysis fields. Using statistical regression, we develop a balance constraint for the BEC of aerosol variables and apply it to a three-dimensional variational data assimilation system in the WRF/Chem model; 1-month forecasts from the WRF/Chem model are employed for BEC statistics. The cross-correlations between the different species are generally high. The largest correlation occurs between elemental carbon and organic carbon with as large as 0.9. After using the balance constraints, the correlations between the unbalanced variables reduce to less than 0.2. A set of data assimilation and forecasting experiments is performed. In these experiments, surface PM2.5 concentrations and speciated concentrations along aircraft flight tracks are assimilated. The analysis increments with the balance constraints show spatial distributions more complex than those without the balance constraints, which is a consequence of the spreading of observation information across variables due to the balance constraints. The forecast skills with the balance constraints show substantial and durable improvements from the 2nd hour to the 16th hour compared with the forecast skills without the balance constraints. The results suggest that the developed balance constraints are important for the aerosol assimilation and forecasting.


2015 ◽  
Vol 143 (1) ◽  
pp. 212-229 ◽  
Author(s):  
Andrew C. Lorenc ◽  
Neill E. Bowler ◽  
Adam M. Clayton ◽  
Stephen R. Pring ◽  
David Fairbairn

Abstract The Met Office has developed an ensemble-variational data assimilation method (hybrid-4DEnVar) as a potential replacement for the hybrid four-dimensional variational data assimilation (hybrid-4DVar), which is the current operational method for global NWP. Both are four-dimensional variational methods, using a hybrid combination of a fixed climatological model of background error covariances with localized covariances from an ensemble of current forecasts designed to describe the structure of “errors of the day.” The fundamental difference between the methods is their modeling of the time evolution of errors within each data assimilation window: 4DVar uses a linear model and its adjoint and 4DEnVar uses a localized linear combination of nonlinear forecasts. Both hybrid-4DVar and hybrid-4DEnVar beat their three-dimensional versions, which are equivalent, in NWP trials. With settings based on the current operational system, hybrid-4DVar performs better than hybrid-4DEnVar. Idealized experiments designed to compare the time evolution of covariances in the methods are described: the basic 4DEnVar represents the evolution of ensemble errors as well as 4DVar. However, 4DVar also represents the evolution of errors from the climatological covariances, whereas 4DEnVar does not. This difference is the main cause of the superiority of hybrid-4DVar. Another difference is that the authors’ 4DVar explicitly penalizes rapid variations in the analysis increment trajectory, while the authors’ 4DEnVar contains no dynamical constaints on imbalance. The authors describe a four-dimensional incremental analysis update (4DIAU) method that filters out the high-frequency oscillations introduced by the poorly balanced 4DEnVar increments. Possible methods for improving hybrid-4DEnVar are discussed.


2010 ◽  
Vol 27 (2) ◽  
pp. 353-369 ◽  
Author(s):  
Alain Caya ◽  
Mark Buehner ◽  
Tom Carrieres

Abstract A three-dimensional variational data assimilation (3DVAR) system has been developed to provide analyses of the ice–ocean state and to initialize a coupled ice–ocean numerical model for forecasting sea ice conditions. This study focuses on the estimation of the background-error statistics, including the spatial and multivariate covariances, and their impact on the quality of the resulting sea ice analyses and forecasts. The covariances are assumed to be horizontally homogeneous and fixed in time. The horizontal correlations are assumed to have a Gaussian shape and are modeled by integrating a diffusion equation. A relatively simple implementation of the ensemble Kalman filter is used to produce ensembles of the ice–ocean model state that are representative of background error and from which the 3DVAR covariance parameters are estimated. Data assimilation experiments, using various configurations of 3DVAR and simpler assimilation approaches, are conducted over a 7-month period during the winter of 2006/07 for the Canadian east coast region. The only data assimilated are the gridded daily ice charts and RADARSAT image analyses produced by the Canadian Ice Service. All of the data assimilation experiments produce significantly improved short-term forecasts as compared with persistence. When assimilating the same data, the forecast quality from the experiments employing either the 3DVAR, direct insertion, or nudging is quite similar. However, assimilation of both the daily ice charts and RADARSAT image analyses in 3DVAR results in significant improvements to the sea ice concentration forecasts. This result supports the use of a data assimilation approach, such as 3DVAR, for combining multiple sources of observational data together with a sophisticated forecast model to provide analyses and forecasts of sea ice conditions.


2019 ◽  
Author(s):  
Shizhang Wang ◽  
Zhiquan Liu

Abstract. A reflectivity forward operator and its associated tangent linear and adjoint operators (together named RadZIceVar) were developed for variational data assimilation (DA). RadZIceVar can analyze both rainwater and ice-phase species (snow and graupel) by directly assimilating radar reflectivity observations. The results of three-dimensional variational (3DVAR) DA experiments with a 3 km grid mesh setting of the Weather Research and Forecasting (WRF) model showed that RadZIceVar was effective at producing an analysis of reflectivity pattern and intensity similar to the observed data. Two to three outer loops with 50–100 iterations in each loop were needed to obtain a converged 3D analysis of rainwater, snow, and graupel, including the melting layers with mixed-phase hydrometeors. The deficiencies in the analysis using this operator could be caused by the poor quality of the background fields and the use of the static background error covariance, and these issues can be partially resolved by using radar-retrieved hydrometeors in a preprocessing step and tuning the spatial correlation length scales of the background errors. The direct radar reflectivity assimilation using RadZIceVar also improved the short-term (2 h–5 h) precipitation forecasts compared to those of the experiment without DA.


Sign in / Sign up

Export Citation Format

Share Document