scholarly journals OH regeneration from methacrolein oxidation investigated in the atmosphere simulation chamber SAPHIR

2014 ◽  
Vol 14 (15) ◽  
pp. 7895-7908 ◽  
Author(s):  
H. Fuchs ◽  
I.-H. Acir ◽  
B. Bohn ◽  
T. Brauers ◽  
H.-P. Dorn ◽  
...  

Abstract. Hydroxyl radicals (OH) are the most important reagent for the oxidation of trace gases in the atmosphere. OH concentrations measured during recent field campaigns in isoprene-rich environments were unexpectedly large. A number of studies showed that unimolecular reactions of organic peroxy radicals (RO2) formed in the initial reaction step of isoprene with OH play an important role for the OH budget in the atmosphere at low mixing ratios of nitrogen monoxide (NO) of less than 100 pptv. It has also been suggested that similar reactions potentially play an important role for RO2 from other compounds. Here, we investigate the oxidation of methacrolein (MACR), one major oxidation product of isoprene, by OH in experiments in the simulation chamber SAPHIR under controlled atmospheric conditions. The experiments show that measured OH concentrations are approximately 50% larger than calculated by the Master Chemical Mechanism (MCM) for conditions of the experiments (NO mixing ratio of 90 pptv). The analysis of the OH budget reveals an OH source that is not accounted for in MCM, which is correlated with the production rate of RO2 radicals from MACR. In order to balance the measured OH destruction rate, 0.77 OH radicals (1σ error: ± 0.31) need to be additionally reformed from each reaction of OH with MACR. The strong correlation of the missing OH source with the production of RO2 radicals is consistent with the concept of OH formation from unimolecular isomerization and decomposition reactions of RO2. The comparison of observations with model calculations gives a lower limit of 0.03 s−1 for the reaction rate constant if the OH source is attributed to an isomerization reaction of MACR-1-OH-2-OO and MACR-2-OH-2-OO formed in the MACR + OH reaction as suggested in the literature (Crounse et al., 2012). This fast isomerization reaction would be a competitor to the reaction of this RO2 species with a minimum of 150 pptv NO. The isomerization reaction would be the dominant reaction pathway for this specific RO2 radical in forested regions, where NO mixing ratios are typically much smaller.

2014 ◽  
Vol 14 (4) ◽  
pp. 5197-5231 ◽  
Author(s):  
H. Fuchs ◽  
I.-H. Acir ◽  
B. Bohn ◽  
T. Brauers ◽  
H.-P. Dorn ◽  
...  

Abstract. Hydroxyl radicals (OH) are the most important reagent for the oxidation of trace gases in the atmosphere. OH concentrations measured during recent field campaigns in isoprene rich environments were unexpectedly large. A number of studies showed that unimolecular reactions of organic peroxy radicals (RO2) formed in the initial reaction step of isoprene with OH play an important role for the OH budget in the atmosphere at low mixing ratios of nitrogen monoxide (NO) of less than 100 pptv. It has also been suggested that similar reactions potentially play an important role for RO2 from other compounds. Here, we investigate the oxidation of methacrolein (MACR), one major oxidation product of isoprene, by OH in experiments in the simulation chamber SAPHIR under controlled atmospheric conditions. The experiments show that measured OH concentrations are approximately 50% larger than calculated by current chemical models for conditions of the experiments (NO mixing ratio of 90 pptv). The analysis of the OH budget reveals a so far unaccounted OH source, which is correlated with the production rate of RO2 radicals from MACR. In order to balance the measured OH destruction rate, (0.77±0.3) OH radicals need to be additionally reformed from each OH that has reacted with MACR. The strong correlation of the missing OH source with the production of RO2 radicals is consistent with the concept of OH formation from unimolecular isomerization and decomposition reactions of RO2. The comparison of observations with model calculations gives a lower limit of 0.03 s−1 for the reaction rate constant, if the OH source is attributed to an isomerization reaction of one RO2 species formed in the MACR+OH reaction as suggested in literature. This fast isomerization reaction would be competitive to the reaction of this RO2 species with minimum 150 pptv NO.


2020 ◽  
Author(s):  
Anna Novelli ◽  
Luc Vereecken ◽  
Birger Bohn ◽  
Hans-Peter Dorn ◽  
Georgios Gkatzelis ◽  
...  

<p>Theoretical, laboratory and chamber studies have shown fast regeneration of hydroxyl radical (OH) in the photochemistry of isoprene largely due to previously disregarded unimolecular reactions which were previously thought not to be important under atmospheric conditions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in the isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospheric conditions (i.e. NO between 0.15 and 2 ppbv and temperature between 25 and 41°C) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to one, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations and the best agreement was observed when at least 50% of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 parts per billion (ppbv). For these levels of NO, up to 50% of the OH radicals are regenerated from the products of the 1,6 α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO<sub>2 </sub>radicals through photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehyde hydrogen shift (rate constant ~10 s<sup>-1</sup> at 300K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP-RO<sub>2</sub>), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy and organic peroxy radicals, carbon monoxide and the sum of methyl vinyl ketone, methacrolein and hydroxyl hydroperoxides) is nearly independent on the adopted yield of HPALD and di-HPCARP-RO<sub>2</sub> as both degrade relatively fast (< 1 h), forming OH radical and CO among other products. Taking into consideration this and earlier isoprene studies, considerable uncertainties remain on the oxygenated products distribution, which affect radical levels and organic aerosol downwind of unpolluted isoprene dominated regions.</p>


2019 ◽  
Author(s):  
Anna Novelli ◽  
Luc Vereecken ◽  
Hans-Peter Dorn ◽  
Andreas Hofzumahaus ◽  
Frank Holland ◽  
...  

Abstract. Theoretical, laboratory and chamber studies have shown fast regeneration of hydroxyl radical (OH) in the photochemistry of isoprene largely due to previously disregarded unimolecular reactions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in the isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospheric conditions (i.e. NO between 0.15 and 2 ppbv and temperature between 25 and 41 °C) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to one, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations and the best agreement was observed when at least 50 % of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 parts per billion (ppbv). For these levels of NO, up to 50 % of the OH radicals are regenerated from the products of the 1,6 α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO2 radicals through photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehyde hydrogen shift (rate constant ∼ 10 s−1 at 300 K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP-RO2), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy and organic peroxy radicals, carbon monoxide and the sum of methyl vinyl ketone, methacrolein and hydroxyl hydroperoxides) is nearly independent on the adopted yield of HPALD and di-HPCARP-RO2 as both degrade relatively fast (


2021 ◽  
Vol 21 (8) ◽  
pp. 6315-6330
Author(s):  
Claire E. Reeves ◽  
Graham P. Mills ◽  
Lisa K. Whalley ◽  
W. Joe F. Acton ◽  
William J. Bloss ◽  
...  

Abstract. Isoprene is the most important biogenic volatile organic compound in the atmosphere. Its calculated impact on ozone (O3) is critically dependent on the model isoprene oxidation chemical scheme, in particular the way the isoprene-derived organic nitrates (IN) are treated. By combining gas chromatography with mass spectrometry, we have developed a system capable of separating and unambiguously measuring individual IN isomers. In this paper we use measurements from its first field deployment, which took place in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese Megacity programme, to test understanding of the isoprene chemistry as simulated in the Master Chemical Mechanism (MCM) (v.3.3.1). Seven individual isoprene nitrates were identified and quantified during the campaign: two β-hydroxy nitrates (IHN), four δ-carbonyl nitrates (ICN), and propanone nitrate. Our measurements show that in the summertime conditions experienced in Beijing the ratio of (1-OH, 2-ONO2)-IHN to (4-OH, 3-ONO2)-IHN (the numbers indicate the carbon atom in the isoprene chain to which the radical is added) increases at NO mixing ratios below 2 ppb. This provides observational field evidence of the redistribution of the peroxy radicals derived from OH oxidation of isoprene away from the kinetic ratio towards a new thermodynamic equilibrium consistent with box model calculations. The observed amounts of δ-ICN demonstrate the importance of daytime addition of NO3 to isoprene in Beijing but suggest that the predominant source of the δ-ICN in the model (reaction of NO with δ-nitrooxy peroxy radicals) may be too large. Our speciated measurements of the four δ-ICN exhibit a mean C1 : C4 isomer ratio of 1.4 and a mean trans : cis isomer ratio of 7 and provide insight into the isomeric distribution of the δ-nitrooxy peroxy radicals. Together our measurements and model results indicate that propanone nitrate was formed from the OH oxidation of δ-ICN both during the day and night, as well as from NO3 addition to propene at night. This study demonstrates the value of speciated IN measurements in testing understanding of the isoprene degradation chemistry and shows how more extensive measurements would provide greater constraints. It highlights areas of the isoprene chemistry that warrant further study, in particular the impact of NO on the formation of the IHN and the NO3-initiated isoprene degradation chemistry, as well as the need for further laboratory studies on the formation and the losses of IN, in particular via photolysis of δ-ICN and hydrolysis.


2020 ◽  
Author(s):  
Philip Carlsson ◽  
Patrick Dewald ◽  
Justin Shenolikar ◽  
Nils Friedrich ◽  
John Crowley ◽  
...  

<p>Experiments at a set of atmospherically relevant conditions were performed in the simulation chamber SAPHIR, investigating the oxidation of isoprene by the nitrate radical (NO<sub>3</sub>)<sub>.</sub> An extremely comprehensive set of instruments detected trace gases, radicals, aerosol properties and hydroxyl (OH) and NO<sub>3</sub> radical reactivity. The chemical conditions in the chamber were varied to change the fate of the peroxy radicals (RO<sub>2</sub>) formed after the reaction between NO<sub>3</sub> and isoprene from either mainly recombining with other RO<sub>2</sub> or mainly reacting with hydroperoxyl radicals (HO<sub>2</sub>). These major atmospheric pathways for RO<sub>2</sub> radicals lead to the formation of organic nitrate compounds which then have different atmospheric fates. The experimental concentration profiles are compared to box model calculations using both the current Master Chemical Mechanism (MCM) as well as recently available literature data alongside new quantum chemical calculations. The discussion here focusses on the resulting RO<sub>2</sub> distribution and deviations in the predictions of early products and total alkyl nitrate yields for the different chemical conditions. Preliminary results for instance show too high night time losses of alkyl nitrates due to ozonolysis in the current MCM.<span> </span></p>


2019 ◽  
Vol 19 (18) ◽  
pp. 11635-11649
Author(s):  
Michael Rolletter ◽  
Martin Kaminski ◽  
Ismail-Hakki Acir ◽  
Birger Bohn ◽  
Hans-Peter Dorn ◽  
...  

Abstract. The photooxidation of the most abundant monoterpene, α-pinene, by the hydroxyl radical (OH) was investigated at atmospheric concentrations in the atmospheric simulation chamber SAPHIR. Concentrations of nitric oxide (NO) were below 120 pptv. Yields of organic oxidation products are determined from measured time series giving values of 0.11±0.05, 0.19±0.06, and 0.05±0.03 for formaldehyde, acetone, and pinonaldehyde, respectively. The pinonaldehyde yield is at the low side of yields measured in previous laboratory studies, ranging from 0.06 to 0.87. These studies were mostly performed at reactant concentrations much higher than observed in the atmosphere. Time series of measured radical and trace-gas concentrations are compared to results from model calculations applying the Master Chemical Mechanism (MCM) 3.3.1. The model predicts pinonaldehyde mixing ratios that are at least a factor of 4 higher than measured values. At the same time, modeled hydroxyl and hydroperoxy (HO2) radical concentrations are approximately 25 % lower than measured values. Vereecken et al. (2007) suggested a shift of the initial organic peroxy radical (RO2) distribution towards RO2 species that do not yield pinonaldehyde but produce other organic products. Implementing these modifications reduces the model–measurement gap of pinonaldehyde by 20 % and also improves the agreement in modeled and measured radical concentrations by 10 %. However, the chemical oxidation mechanism needs further adjustment to explain observed radical and pinonaldehyde concentrations. This could be achieved by adjusting the initial RO2 distribution, but could also be done by implementing alternative reaction channels of RO2 species that currently lead to the formation of pinonaldehyde in the model.


2020 ◽  
Vol 20 (6) ◽  
pp. 3333-3355 ◽  
Author(s):  
Anna Novelli ◽  
Luc Vereecken ◽  
Birger Bohn ◽  
Hans-Peter Dorn ◽  
Georgios I. Gkatzelis ◽  
...  

Abstract. Theoretical, laboratory, and chamber studies have shown fast regeneration of the hydroxyl radical (OH) in the photochemistry of isoprene, largely due to unimolecular reactions which were previously thought not to be important under atmospheric conditions. Based on early field measurements, nearly complete regeneration was hypothesized for a wide range of tropospheric conditions, including areas such as the rainforest where slow regeneration of OH radicals is expected due to low concentrations of nitric oxide (NO). In this work the OH regeneration in isoprene oxidation is directly quantified for the first time through experiments covering a wide range of atmospherically relevant NO levels (between 0.15 and 2 ppbv – parts per billion by volume) in the atmospheric simulation chamber SAPHIR. These conditions cover remote areas partially influenced by anthropogenic NO emissions, giving a regeneration efficiency of OH close to 1, and areas like the Amazonian rainforest with very low NO, resulting in a surprisingly high regeneration efficiency of 0.5, i.e. a factor of 2 to 3 higher than explainable in the absence of unimolecular reactions. The measured radical concentrations were compared to model calculations, and the best agreement was observed when at least 50 % of the total loss of isoprene peroxy radicals conformers (weighted by their abundance) occurs via isomerization reactions for NO lower than 0.2 ppbv. For these levels of NO, up to 50 % of the OH radicals are regenerated from the products of the 1,6 α-hydroxy-hydrogen shift (1,6-H shift) of Z-δ-RO2 radicals through the photolysis of an unsaturated hydroperoxy aldehyde (HPALD) and/or through the fast aldehydic hydrogen shift (rate constant ∼10 s−1 at 300 K) in di-hydroperoxy carbonyl peroxy radicals (di-HPCARP-RO2), depending on their relative yield. The agreement between all measured and modelled trace gases (hydroxyl, hydroperoxy, and organic peroxy radicals, carbon monoxide, and the sum of methyl vinyl ketone, methacrolein, and hydroxyl hydroperoxides) is nearly independent of the adopted yield of HPALD and di-HPCARP-RO2 as both degrade relatively fast (<1 h), forming the OH radical and CO among other products. Taking into consideration this and earlier isoprene studies, considerable uncertainties remain on the distribution of oxygenated products, which affect radical levels and organic aerosol downwind of unpolluted isoprene-dominated regions.


2019 ◽  
Author(s):  
Michael Rolletter ◽  
Martin Kaminski ◽  
Ismail-Hakki Acir ◽  
Birger Bohn ◽  
Hans-Peter Dorn ◽  
...  

Abstract. The photooxidation of the most abundant monoterpene α-pinene, by the hydroxyl radical (OH) was investigated at atmospheric concentrations in the atmospheric simulation chamber SAPHIR. Concentrations of nitric oxide (NO) were below 120 pptv. Yields of organic oxidation products are determined from measured time series giving values of 0.11 ± 0.05, 0.19 ± 0.06, and 0.05 ± 0.03 for formaldehyde, acetone, and pinonaldehyde, respectively. The pinonaldehyde yield is at the low side of yields measured in previous laboratory studies, ranging from 0.06 to 0.87. These studies were mostly performed at reactant concentrations much higher than observed in the atmosphere. Time series of measured radical and trace gas concentrations are compared to results from model calculations applying the Master Chemical Mechanism (MCM) 3.3.1. The model predicts pinonaldehyde mixing ratios that are at least a factor of 4 higher than measured values. At the same time, modelled hydroxyl and hydroperoxy (HO2) radical concentrations are approximately 25 % lower than measured values. Vereecken et al. (2007) suggested a shift of the initial organic peroxy radical (RO2) distribution towards RO2 species that do not yield pinonaldehyde, but produce other organic products. Implementing these modifications reduces the model-measurement gap of pinonaldehyde by 20 % and also improves the agreement in modelled and measured radical concentrations by 10 %. However, the chemical oxidation mechanism needs further adjustment to explain observed radical and pinonaldehyde concentrations. This could be achieved by adjusting the initial RO2 distribution, but could also be done by implementing alternative reaction channels of RO2 species that currently lead to the formation of pinonaldehyde in the model.


2012 ◽  
Vol 12 (5) ◽  
pp. 2567-2585 ◽  
Author(s):  
Y. Kanaya ◽  
A. Hofzumahaus ◽  
H.-P. Dorn ◽  
T. Brauers ◽  
H. Fuchs ◽  
...  

Abstract. A photochemical box model constrained by ancillary observations was used to simulate OH and HO2 concentrations for three days of ambient observations during the HOxComp field campaign held in Jülich, Germany in July 2005. Daytime OH levels observed by four instruments were fairly well reproduced to within 33% by a base model run (Regional Atmospheric Chemistry Mechanism with updated isoprene chemistry adapted from Master Chemical Mechanism ver. 3.1) with high R2 values (0.72–0.97) over a range of isoprene (0.3–2 ppb) and NO (0.1–10 ppb) mixing ratios. Daytime HO2(*) levels, reconstructed from the base model results taking into account the sensitivity toward speciated RO2 (organic peroxy) radicals, as recently reported from one of the participating instruments in the HO2 measurement mode, were 93% higher than the observations made by the single instrument. This also indicates an overprediction of the HO2 to OH recycling. Together with the good model-measurement agreement for OH, it implies a missing OH source in the model. Modeled OH and HO2(*) could only be matched to the observations by addition of a strong unknown loss process for HO2(*) that recycles OH at a high yield. Adding to the base model, instead, the recently proposed isomerization mechanism of isoprene peroxy radicals (Peeters and Müller, 2010) increased OH and HO2(*) by 28% and 13% on average. Although these were still only 4% higher than the OH observations made by one of the instruments, larger overestimations (42–70%) occurred with respect to the OH observations made by the other three instruments. The overestimation in OH could be diminished only when reactive alkanes (HC8) were solely introduced to the model to explain the missing fraction of observed OH reactivity. Moreover, the overprediction of HO2(*) became even larger than in the base case. These analyses imply that the rates of the isomerization are not readily supported by the ensemble of radical observations. One of the measurement days was characterized by low isoprene concentrations (∼0.5 ppb) and OH reactivity that was well explained by the observed species, especially before noon. For this selected period, as opposed to the general behavior, the model tended to underestimate HO2(*). We found that this tendency is associated with high NOx concentrations, suggesting that some HO2 production or regeneration processes under high NOx conditions were being overlooked; this might require revision of ozone production regimes.


2015 ◽  
Vol 15 (6) ◽  
pp. 9709-9766 ◽  
Author(s):  
M. E. Jenkin ◽  
J. C. Young ◽  
A. R. Rickard

Abstract. The chemistry of isoprene degradation in the Master Chemical Mechanism (MCM) has been systematically refined and updated to reflect recent advances in understanding, with these updates appearing in the latest version, MCM v3.3. The complete isoprene degradation mechanism in MCM v3.3 consists of 1935 reactions of 605 closed shell and free radical species, which treat the chemistry initiated by reaction with OH radicals, NO3 radicals and ozone (O3). A detailed overview of the updates is provided, within the context of reported kinetic and mechanistic information. The revisions mainly relate to the OH-initiated chemistry, which tends to dominate under atmospheric conditions, although these include updates to the chemistry of some products that are also generated from the O3 - and NO3-initiated oxidation. The revisions have impacts in a number of key areas, including HOx recycling, NOx recycling and the formation of species reported to play a role in SOA-formation mechanisms. The performance of the MCM v3.3 isoprene mechanism has been compared with those of earlier versions (MCM v3.1 and MCM v3.2) over a range of relevant conditions, using a box model of the tropical forested boundary layer. The results of these calculations are presented and discussed, and are used to illustrate the impacts of the mechanistic updates in MCM v3.3.


Sign in / Sign up

Export Citation Format

Share Document