scholarly journals Observations of speciated isoprene nitrates in Beijing: implications for isoprene chemistry

2021 ◽  
Vol 21 (8) ◽  
pp. 6315-6330
Author(s):  
Claire E. Reeves ◽  
Graham P. Mills ◽  
Lisa K. Whalley ◽  
W. Joe F. Acton ◽  
William J. Bloss ◽  
...  

Abstract. Isoprene is the most important biogenic volatile organic compound in the atmosphere. Its calculated impact on ozone (O3) is critically dependent on the model isoprene oxidation chemical scheme, in particular the way the isoprene-derived organic nitrates (IN) are treated. By combining gas chromatography with mass spectrometry, we have developed a system capable of separating and unambiguously measuring individual IN isomers. In this paper we use measurements from its first field deployment, which took place in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese Megacity programme, to test understanding of the isoprene chemistry as simulated in the Master Chemical Mechanism (MCM) (v.3.3.1). Seven individual isoprene nitrates were identified and quantified during the campaign: two β-hydroxy nitrates (IHN), four δ-carbonyl nitrates (ICN), and propanone nitrate. Our measurements show that in the summertime conditions experienced in Beijing the ratio of (1-OH, 2-ONO2)-IHN to (4-OH, 3-ONO2)-IHN (the numbers indicate the carbon atom in the isoprene chain to which the radical is added) increases at NO mixing ratios below 2 ppb. This provides observational field evidence of the redistribution of the peroxy radicals derived from OH oxidation of isoprene away from the kinetic ratio towards a new thermodynamic equilibrium consistent with box model calculations. The observed amounts of δ-ICN demonstrate the importance of daytime addition of NO3 to isoprene in Beijing but suggest that the predominant source of the δ-ICN in the model (reaction of NO with δ-nitrooxy peroxy radicals) may be too large. Our speciated measurements of the four δ-ICN exhibit a mean C1 : C4 isomer ratio of 1.4 and a mean trans : cis isomer ratio of 7 and provide insight into the isomeric distribution of the δ-nitrooxy peroxy radicals. Together our measurements and model results indicate that propanone nitrate was formed from the OH oxidation of δ-ICN both during the day and night, as well as from NO3 addition to propene at night. This study demonstrates the value of speciated IN measurements in testing understanding of the isoprene degradation chemistry and shows how more extensive measurements would provide greater constraints. It highlights areas of the isoprene chemistry that warrant further study, in particular the impact of NO on the formation of the IHN and the NO3-initiated isoprene degradation chemistry, as well as the need for further laboratory studies on the formation and the losses of IN, in particular via photolysis of δ-ICN and hydrolysis.

2020 ◽  
Author(s):  
Claire E. Reeves ◽  
Graham P. Mills ◽  
Lisa K. Whalley ◽  
W. Joe F. Acton ◽  
William J. Bloss ◽  
...  

Abstract. Isoprene is the most important biogenic volatile organic compound in the atmosphere. Its calculated impact on ozone (O3) is critically dependent on the model isoprene oxidation chemical scheme, in particular the way the isoprene-derived nitrates (IN) are treated. By combining gas chromatography with mass spectrometry, we have developed a system capable of separating, and unambiguously measuring, individual IN isomers. In this paper we report measurements from its first field deployment, which took place in Beijing as part of the Atmospheric Pollution and Human Health in a Chinese Megacity (APHH-Beijing) programme, along with box model simulations using the Master Chemical Mechanism (MCM) (v.3.3.1) to assess the key processes affecting the production and loss of the IN. Seven individual isoprene nitrates were identified and quantified during the summer campaign: two β-isoprene hydroxy nitrates (IHN); four δ isoprene carbonyl nitrates (ICN); and propanone nitrate. Whilst we had previously demonstrated that the system can measure the four δ-IHN, we found no evidence of them in Beijing. The two β-IHN mixing ratios are well correlated with an R2 value of 0.85. The mean for their ratio ((1-OH, 2-ONO2)-IHN : (4-OH, 3-ONO2)-IHN) is 3.4 and exhibits no clear diel cycle (the numbers in the names indicate the carbon (C) atom in the isoprene chain to which the radical is added). Examining this in a box model demonstrates its sensitivity to nitric oxide (NO), with lower NO mixing ratios favouring (1-OH, 2-ONO2)-IHN over (4-OH, 3-ONO2)-IHN. This is largely a reflection of the modelled ratios of their respective precursor peroxy radicals which, at NO mixing ratios of less than 1 part per billion (ppb), increase substantially with decreasing NO. Interestingly, this ratio in the peroxy radicals still exceeds the kinetic ratio (i.e. their initial ratio based on the yields of the adducts from OH addition to isoprene and the rates of reaction of the adducts with oxygen (O2)) even at NO mixing ratios as high as 100 ppb. The relationship of the observed β-IHN ratio with NO is much weaker than modelled, partly due to far fewer data points, but it agrees with the model simulation in so far as there tend to be larger ratios at sub 1 ppb amounts of NO. Of the δ-ICN, the two trans (E) isomers are observed to have the highest mixing ratios and the mean isomer ratio (E-(4-ONO2, 1-CO)-ICN to E-(1-ONO2, 4-CO)-ICN)) is 1.4, which is considerably lower than the expected ratio of 6 for addition of NO3 in the C1 and C4 carbon positions in the isoprene chain. The MCM produces far more δ-ICN than observed, particularly at night and it also simulates an increase in the daytime δ-ICN that greatly exceeds that seen in the observations. Interestingly, the modelled source of δ-ICN is predominantly during the daytime, due to the presence in Beijing of appreciable daytime amounts of NO3 along with isoprene. The modelled ratios of δ-ICN to propanone nitrate are very different to the observed. This study demonstrates the value of speciated IN measurements to test our understanding of the isoprene degradation chemistry. Our interpretation is limited by the uncertainties in our measurements and relatively small data set, but highlights areas of the isoprene chemistry that warrant further study, in particular the NO3 initiated isoprene degradation chemistry.


2014 ◽  
Vol 14 (15) ◽  
pp. 7895-7908 ◽  
Author(s):  
H. Fuchs ◽  
I.-H. Acir ◽  
B. Bohn ◽  
T. Brauers ◽  
H.-P. Dorn ◽  
...  

Abstract. Hydroxyl radicals (OH) are the most important reagent for the oxidation of trace gases in the atmosphere. OH concentrations measured during recent field campaigns in isoprene-rich environments were unexpectedly large. A number of studies showed that unimolecular reactions of organic peroxy radicals (RO2) formed in the initial reaction step of isoprene with OH play an important role for the OH budget in the atmosphere at low mixing ratios of nitrogen monoxide (NO) of less than 100 pptv. It has also been suggested that similar reactions potentially play an important role for RO2 from other compounds. Here, we investigate the oxidation of methacrolein (MACR), one major oxidation product of isoprene, by OH in experiments in the simulation chamber SAPHIR under controlled atmospheric conditions. The experiments show that measured OH concentrations are approximately 50% larger than calculated by the Master Chemical Mechanism (MCM) for conditions of the experiments (NO mixing ratio of 90 pptv). The analysis of the OH budget reveals an OH source that is not accounted for in MCM, which is correlated with the production rate of RO2 radicals from MACR. In order to balance the measured OH destruction rate, 0.77 OH radicals (1σ error: ± 0.31) need to be additionally reformed from each reaction of OH with MACR. The strong correlation of the missing OH source with the production of RO2 radicals is consistent with the concept of OH formation from unimolecular isomerization and decomposition reactions of RO2. The comparison of observations with model calculations gives a lower limit of 0.03 s−1 for the reaction rate constant if the OH source is attributed to an isomerization reaction of MACR-1-OH-2-OO and MACR-2-OH-2-OO formed in the MACR + OH reaction as suggested in the literature (Crounse et al., 2012). This fast isomerization reaction would be a competitor to the reaction of this RO2 species with a minimum of 150 pptv NO. The isomerization reaction would be the dominant reaction pathway for this specific RO2 radical in forested regions, where NO mixing ratios are typically much smaller.


2021 ◽  
Author(s):  
Chunmeng Li ◽  
Haichao Wang ◽  
Xiaorui Chen ◽  
Tianyu Zhai ◽  
Shiyi Chen ◽  
...  

Abstract. We developed a thermal dissociation cavity enhanced absorption spectroscopy (TD-CEAS) for the in-situ measurement of NO2, total peroxy nitrates (PNs, RO2NO2), and total alkyl nitrates (ANs, RONO2) in the atmosphere. PNs and ANs are thermally converted to NO2 at the corresponding pyrolysis temperatures and detected by CEAS at 435–455 nm. The instrument samples sequentially from three channels at ambient temperature, 453 K and 653 K, with a cycle of 3 minutes, for measuring NO2, NO2+PNs, and NO2+PNs+ANs, respectively. The absorptions between the three channels are used to derive the mixing ratios of PNs and ANs by the spectral fitting. The limit of detection (LOD) is estimated to be 97 pptv (1σ) at 6 s intervals for NO2. The measurement uncertainty of NO2 is estimated to be 8 %, while the uncertainties of PNs and ANs detection is larger than NO2 due to some chemical interferences in the heating channels, such as the reaction of NO (or NO2) with the peroxy radicals produced by the thermal dissociation of organic nitrates. Based on the laboratory experiments and numerical simulations, we set up a lookup table method to correct these interferences in PNs and ANs channel under various concentrations of ambient organic nitrates, NO, and NO2. Finally, we present the first field deployment and compared it with other instruments during a field campaign in China, the advantage and limitations of this instrument are outlined.


2020 ◽  
Author(s):  
Patrick Dewald ◽  
Jonathan M. Liebmann ◽  
Nils Friedrich ◽  
Justin Shenolikar ◽  
Jan Schuladen ◽  
...  

Abstract. In a series of experiments in an atmospheric simulation chamber (SAPHIR, Forschungszentrum Jülich, Germany) NO3 reactivity (kNO3) resulting from the reaction of NO3 with isoprene and stable trace gases formed as products was measured directly using a flow-tube reactor coupled to a cavity-ring-down spectrometer (FT-CRDS). The experiments were carried out in both dry and humid air with variation of the initial mixing ratios of ozone (50–100 ppbv), isoprene (3–22 ppbv) and NO2 (5–30 ppbv). kNO3 was in excellent agreement with values calculated from the isoprene mixing ratio and the rate coefficient for the reaction of NO3 with isoprene. This result serves both to confirm that the FT-CRDS returns accurate values of kNO3 even at elevated NO2 concentrations and to show that reactions of NO3 with stable reaction products like non-radical organic nitrates do not contribute significantly to NO3 reactivity during the oxidation of isoprene. A comparison of kNO3 with NO3 reactivities calculated from NO3 mixing ratios and NO3 production rates suggests that organic peroxy radicals and HO2 account for ~ 50 % of NO3 losses. This contradicts predictions based on numerical simulations using the Master Chemical Mechanism (MCM version 3.3.1) unless the rate coefficient for reaction between NO3 and isoprene-derived RO2 is roughly doubled to ≈ 5 × 10−12 cm3 molecule−1 s−1.


2020 ◽  
Vol 20 (17) ◽  
pp. 10459-10475
Author(s):  
Patrick Dewald ◽  
Jonathan M. Liebmann ◽  
Nils Friedrich ◽  
Justin Shenolikar ◽  
Jan Schuladen ◽  
...  

Abstract. In a series of experiments in an atmospheric simulation chamber (SAPHIR,1 Forschungszentrum Jülich, Germany), NO3 reactivity (kNO3) resulting from the reaction of NO3 with isoprene and stable trace gases formed as products was measured directly using a flow tube reactor coupled to a cavity ring-down spectrometer (FT-CRDS). The experiments were carried out in both dry and humid air with variation of the initial mixing ratios of ozone (50–100 ppbv), isoprene (3–22 ppbv) and NO2 (5–30 ppbv). kNO3 was in excellent agreement with values calculated from the isoprene mixing ratio and the rate coefficient for the reaction of NO3 with isoprene. This result serves to confirm that the FT-CRDS returns accurate values of kNO3 even at elevated NO2 concentrations and to show that reactions of NO3 with stable reaction products like non-radical organic nitrates do not contribute significantly to NO3 reactivity during the oxidation of isoprene. A comparison of kNO3 with NO3 reactivities calculated from NO3 mixing ratios and NO3 production rates suggests that organic peroxy radicals and HO2 account for ∼50 % of NO3 losses. This contradicts predictions based on numerical simulations using the Master Chemical Mechanism (MCM version 3.3.1) unless the rate coefficient for reaction between NO3 and isoprene-derived RO2 is roughly doubled to ∼5×10-12 cm3 molecule−1 s−1.


2021 ◽  
Vol 14 (6) ◽  
pp. 4033-4051
Author(s):  
Chunmeng Li ◽  
Haichao Wang ◽  
Xiaorui Chen ◽  
Tianyu Zhai ◽  
Shiyi Chen ◽  
...  

Abstract. We developed thermal dissociation cavity-enhanced absorption spectroscopy (TD-CEAS) for the in situ measurement of NO2, total peroxy nitrates (PNs, RO2NO2), and total alkyl nitrates (ANs, RONO2) in the atmosphere. PNs and ANs were thermally converted to NO2 at the corresponding pyrolytic temperatures and detected by CEAS at 435–455 nm. The instrument sampled sequentially from three channels at ambient temperature, 453 and 653 K, with a cycle of 3 min, to measure NO2, NO2+ PNs, and NO2+ PNs + ANs. The absorptions between the three channels were used to derive the mixing ratios of PNs and ANs by spectral fitting. The detection limit (LOD, 1σ) for retrieving NO2 was 97 parts per trillion by volume (pptv) in 6 s. The measurement uncertainty of NO2 was 9 %, while the uncertainties of PN and AN detection were larger than those of NO2 due to chemical interferences that occurred in the heated channels, such as the reaction of NO (or NO2) with the peroxy radicals produced by the thermal dissociation of organic nitrates. Based on laboratory experiments and numerical simulations, we created a lookup table method to correct these interferences in PN and AN channels under various ambient organic nitrates, NO, and NO2. Finally, we present the first field deployment and compare it with other instruments during a field campaign in China. The advantages and limitations of this instrument are outlined.


2012 ◽  
Vol 12 (5) ◽  
pp. 2567-2585 ◽  
Author(s):  
Y. Kanaya ◽  
A. Hofzumahaus ◽  
H.-P. Dorn ◽  
T. Brauers ◽  
H. Fuchs ◽  
...  

Abstract. A photochemical box model constrained by ancillary observations was used to simulate OH and HO2 concentrations for three days of ambient observations during the HOxComp field campaign held in Jülich, Germany in July 2005. Daytime OH levels observed by four instruments were fairly well reproduced to within 33% by a base model run (Regional Atmospheric Chemistry Mechanism with updated isoprene chemistry adapted from Master Chemical Mechanism ver. 3.1) with high R2 values (0.72–0.97) over a range of isoprene (0.3–2 ppb) and NO (0.1–10 ppb) mixing ratios. Daytime HO2(*) levels, reconstructed from the base model results taking into account the sensitivity toward speciated RO2 (organic peroxy) radicals, as recently reported from one of the participating instruments in the HO2 measurement mode, were 93% higher than the observations made by the single instrument. This also indicates an overprediction of the HO2 to OH recycling. Together with the good model-measurement agreement for OH, it implies a missing OH source in the model. Modeled OH and HO2(*) could only be matched to the observations by addition of a strong unknown loss process for HO2(*) that recycles OH at a high yield. Adding to the base model, instead, the recently proposed isomerization mechanism of isoprene peroxy radicals (Peeters and Müller, 2010) increased OH and HO2(*) by 28% and 13% on average. Although these were still only 4% higher than the OH observations made by one of the instruments, larger overestimations (42–70%) occurred with respect to the OH observations made by the other three instruments. The overestimation in OH could be diminished only when reactive alkanes (HC8) were solely introduced to the model to explain the missing fraction of observed OH reactivity. Moreover, the overprediction of HO2(*) became even larger than in the base case. These analyses imply that the rates of the isomerization are not readily supported by the ensemble of radical observations. One of the measurement days was characterized by low isoprene concentrations (∼0.5 ppb) and OH reactivity that was well explained by the observed species, especially before noon. For this selected period, as opposed to the general behavior, the model tended to underestimate HO2(*). We found that this tendency is associated with high NOx concentrations, suggesting that some HO2 production or regeneration processes under high NOx conditions were being overlooked; this might require revision of ozone production regimes.


2019 ◽  
Author(s):  
Michelle L. Lew ◽  
Pamela S. Rickly ◽  
Brandon P. Bottorff ◽  
Sofia Sklaveniti ◽  
Thierry Léonardis ◽  
...  

Abstract. Reactions of the hydroxyl (OH) and peroxy radicals (HO2 and RO2) play a central role in the chemistry of the atmosphere. In addition to controlling the lifetimes of many trace gases important to issues of global climate change, OH radical reactions initiate the oxidation of volatile organic compounds (VOCs) which can lead to the production of ozone and secondary organic aerosols in the atmosphere. Previous measurements of these radicals in forest environments characterized by high mixing ratios of isoprene and low mixing ratios of nitrogen oxides (NOx) have shown serious discrepancies with modeled concentrations. These results bring into question our understanding of the atmospheric chemistry of isoprene and other biogenic VOCs under low NOx conditions. During the summer of 2015, OH and HO2 radical concentrations as well as total OH reactivity were measured using Laser-Induced Fluorescence - Fluorescence Assay by Gas Expansion (LIF-FAGE) techniques as part of the Indiana Radical, Reactivity and Ozone Production Intercomparison (IRRONIC). This campaign took place in a forested area near the Indiana University, Bloomington campus characterized by high mixing ratios of isoprene and low mixing ratios of NOx. Supporting measurements of photolysis rates, VOCs, NOx, and other species were used to constrain a zero-dimensional box model based on the Regional Atmospheric Chemistry Mechanism (RACM2) and the Master Chemical Mechanism (MCM). Using an OH chemical scavenger technique, the study revealed the presence of an interference with the LIF-FAGE measurements of OH that increased with both ambient concentrations of ozone and temperature. Subtraction of the interference resulted in measured OH concentrations that were in better agreement with model predictions, although the model still underestimated the measured concentrations, likely due to an underestimation of the concentration of NO at this site. Measurements of HO2 radical concentrations during the campaign included a fraction of isoprene-based peroxy radicals (HO2* = HO2 + αRO2) and were found to agree with model predictions. On average, the measured reactivity was consistent with that calculated from measured OH sinks to within 20 %, with modeled oxidation products accounting for the missing reactivity, although significant missing reactivity (approximately 40 % of the total measured reactivity) was observed on some days.


2005 ◽  
Vol 5 (1) ◽  
pp. 655-702
Author(s):  
M. de Reus ◽  
H. Fischer ◽  
R. Sander ◽  
V. Gros ◽  
R. Kormann ◽  
...  

Abstract. An intensive field measurement campaign was performed in July/August 2002 at the Global Atmospheric Watch station Izaña on Tenerife to study the interaction of mineral dust aerosol and tropospheric chemistry (MINATROC). A dense Saharan dust plume, with aerosol masses exceeding 500 µg m-3, persisted for three days. During this dust event strongly reduced mixing ratios of ROx (HO2, CH3O2 and higher organic peroxy radicals), H2O2, NOx (NO and NO2) and O3 were observed. A chemistry boxmodel, constrained by the measurements, has been used to study gas phase and heterogeneous chemistry. It appeared to be difficult to reproduce the observed HCHO mixing ratios with the model, possibly related to the representation of precursor gas concentrations or the absence of dry deposition. The model calculations indicate that the reduced H2O2 mixing ratios in the dust plume can be explained by including the heterogeneous removal reaction of HO2 with an uptake coefficient of 0.2, or by assuming heterogeneous removal of H2O2 with an accommodation coefficient of 3×10-4. However, these heterogeneous reactions cannot explain the low ROx mixing ratios observed during the dust event. Whereas a mean daytime net ozone production rate (NOP) of 1.06 ppbv/hr occurred throughout the campaign, the reduced ROx and NOx mixing ratios in the Saharan dust plume contributed to a reduced NOP of 0.14–0.32 ppbv/hr, which likely explains the relatively low ozone mixing ratios observed during this event.


2021 ◽  
Vol 21 (3) ◽  
pp. 2125-2147
Author(s):  
Lisa K. Whalley ◽  
Eloise J. Slater ◽  
Robert Woodward-Massey ◽  
Chunxiang Ye ◽  
James D. Lee ◽  
...  

Abstract. Measurements of OH, HO2, complex RO2 (alkene- and aromatic-related RO2) and total RO2 radicals taken during the integrated Study of AIR Pollution PROcesses in Beijing (AIRPRO) campaign in central Beijing in the summer of 2017, alongside observations of OH reactivity, are presented. The concentrations of radicals were elevated, with OH reaching up to 2.8×107moleculecm-3, HO2 peaking at 1×109moleculecm-3 and the total RO2 concentration reaching 5.5×109moleculecm-3. OH reactivity (k(OH)) peaked at 89 s−1 during the night, with a minimum during the afternoon of ≈22s-1 on average. An experimental budget analysis, in which the rates of production and destruction of the radicals are compared, highlighted that although the sources and sinks of OH were balanced under high NO concentrations, the OH sinks exceeded the known sources (by 15 ppbv h−1) under the very low NO conditions (<0.5 ppbv) experienced in the afternoons, demonstrating a missing OH source consistent with previous studies under high volatile organic compound (VOC) emissions and low NO loadings. Under the highest NO mixing ratios (104 ppbv), the HO2 production rate exceeded the rate of destruction by ≈50ppbvh-1, whilst the rate of destruction of total RO2 exceeded the production by the same rate, indicating that the net propagation rate of RO2 to HO2 may be substantially slower than assumed. If just 10 % of the RO2 radicals propagate to HO2 upon reaction with NO, the HO2 and RO2 budgets could be closed at high NO, but at low NO this lower RO2 to HO2 propagation rate revealed a missing RO2 sink that was similar in magnitude to the missing OH source. A detailed box model that incorporated the latest Master Chemical Mechanism (MCM3.3.1) reproduced the observed OH concentrations well but over-predicted the observed HO2 under low concentrations of NO (<1 ppbv) and under-predicted RO2 (both the complex RO2 fraction and other RO2 types which we classify as simple RO2) most significantly at the highest NO concentrations. The model also under-predicted the observed k(OH) consistently by ≈10s-1 across all NOx levels, highlighting that the good agreement for OH was fortuitous due to a cancellation of missing OH source and sink terms in its budget. Including heterogeneous loss of HO2 to aerosol surfaces did reduce the modelled HO2 concentrations in line with the observations but only at NO mixing ratios <0.3 ppbv. The inclusion of Cl atoms, formed from the photolysis of nitryl chloride, enhanced the modelled RO2 concentration on several mornings when the Cl atom concentration was calculated to exceed 1×104atomscm-3 and could reconcile the modelled and measured RO2 concentrations at these times. However, on other mornings, when the Cl atom concentration was lower, large under-predictions in total RO2 remained. Furthermore, the inclusion of Cl atom chemistry did not enhance the modelled RO2 beyond the first few hours after sunrise and so was unable to resolve the modelled under-prediction in RO2 observed at other times of the day. Model scenarios, in which missing VOC reactivity was included as an additional reaction that converted OH to RO2, highlighted that the modelled OH, HO2 and RO2 concentrations were sensitive to the choice of RO2 product. The level of modelled to measured agreement for HO2 and RO2 (both complex and simple) could be improved if the missing OH reactivity formed a larger RO2 species that was able to undergo reaction with NO, followed by isomerisation reactions reforming other RO2 species, before eventually generating HO2. In this work an α-pinene-derived RO2 species was used as an example. In this simulation, consistent with the experimental budget analysis, the model underestimated the observed OH, indicating a missing OH source. The model uncertainty, with regards to the types of RO2 species present and the radicals they form upon reaction with NO (HO2 directly or another RO2 species), leads to over an order of magnitude less O3 production calculated from the predicted peroxy radicals than calculated from the observed peroxy radicals at the highest NO concentrations. This demonstrates the rate at which the larger RO2 species propagate to HO2, to another RO2 or indeed to OH needs to be understood to accurately simulate the rate of ozone production in environments such as Beijing, where large multifunctional VOCs are likely present.


Sign in / Sign up

Export Citation Format

Share Document