scholarly journals Mixing layer height and its implications for air pollution over Beijing, China

2016 ◽  
Vol 16 (4) ◽  
pp. 2459-2475 ◽  
Author(s):  
Guiqian Tang ◽  
Jinqiang Zhang ◽  
Xiaowan Zhu ◽  
Tao Song ◽  
Christoph Münkel ◽  
...  

Abstract. The mixing layer is an important meteorological factor that affects air pollution. In this study, the atmospheric mixing layer height (MLH) was observed in Beijing from July 2009 to December 2012 using a ceilometer. By comparison with radiosonde data, we found that the ceilometer underestimates the MLH under conditions of neutral stratification caused by strong winds, whereas it overestimates the MLH when sand-dust is crossing. Using meteorological, PM2.5, and PM10 observational data, we screened the observed MLH automatically; the ceilometer observations were fairly consistent with the radiosondes, with a correlation coefficient greater than 0.9. Further analysis indicated that the MLH is low in autumn and winter and high in spring and summer in Beijing. There is a significant correlation between the sensible heat flux and MLH, and the diurnal cycle of the MLH in summer is also affected by the circulation of mountainous plain winds. Using visibility as an index to classify the degree of air pollution, we found that the variation in the sensible heat and buoyancy term in turbulent kinetic energy (TKE) is insignificant when visibility decreases from 10 to 5 km, but the reduction of shear term in TKE is near 70 %. When visibility decreases from 5 to 1 km, the variation of the shear term in TKE is insignificant, but the decrease in the sensible heat and buoyancy term in TKE is approximately 60 %. Although the correlation between the daily variation of the MLH and visibility is very poor, the correlation between them is significantly enhanced when the relative humidity increases beyond 80 %. This indicates that humidity-related physicochemical processes is the primary source of atmospheric particles under heavy pollution and that the dissipation of atmospheric particles mainly depends on the MLH. The presented results of the atmospheric mixing layer provide useful empirical information for improving meteorological and atmospheric chemistry models and the forecasting and warning of air pollution.

2015 ◽  
Vol 15 (20) ◽  
pp. 28249-28288 ◽  
Author(s):  
G. Tang ◽  
J. Zhang ◽  
C. Münkel ◽  
T. Song ◽  
B. Hu ◽  
...  

Abstract. The mixing layer is an important meteorological factor that affects atmospheric pollution. A study of atmospheric pollution in the Beijing area was performed from July 2009 to December 2012, using a ceilometer, to observe and study the atmospheric mixing layer height (MLH). Based on a comparison and validation of multiple types of data, we evaluated the quality of the MLH data as observed by the ceilometer and found that the ceilometer underestimates MLH during neutral stratification caused by strong winds, whereas it overestimates MLH during dust crossing. By combining conventional meteorological data and PM2.5 and PM10 observational data, we screened the observational results for the MLH, and the ceilometer observations were fairly consistent with the meteorological radiosonde profile results. The correlation coefficient is more than 0.9, and the effective rate of acquired data is near 80 %. Further analysis of the variation in the MLH indicates that the MLH in the Beijing area exhibits the feature of being low in autumn and winter and being high in spring and summer. There is a significant correlation between the variation in the MLH and the sensible heat flux, whereas the diurnal variation in the mixing layer during summer is affected by the circulation of mountainous plain winds. By applying visibility as the index for the classification of atmospheric pollution degree, it is found that in comparison with a clear day, the variation of sensible heat and buoyancy term in turbulent kinetic energy (TKE) of a slight haze day is insignificant, but the reduction of shear term in TKE is near 70 % when visibility decreased from 10 to 5 km; in comparison with the slight haze day, the variation of shear term in TKE of medium and heavy haze days is insignificant, but the declination of sensible heat and buoyancy term in TKE are about 60 % when visibility decreased from 5 to 1 km. Although the correlation between the daily variation of MLH and visibility is very poor, the correlation between them is significantly enhanced as the relative humidity increases beyond 80 %. This characterizes the generation of humidity-related physiochemical processes as the main source of atmospheric particles under heavy pollution, whereas the dissipation of atmospheric particles mainly depends on the MLH. The presented results on the atmospheric mixing layer and its thermal dynamic structure under different degrees of pollution provide a scientific basis for improving the meteorological and atmospheric chemistry models and the forecasting and warning of atmospheric pollution.


2014 ◽  
Vol 7 (6) ◽  
pp. 1701-1709 ◽  
Author(s):  
X. Y. Wang ◽  
K. C. Wang

Abstract. Mixing layer height (h) is an important parameter for understanding the transport process in the troposphere, air pollution, weather and climate change. Many methods have been proposed to determine h by identifying the turning point of the radiosonde profile. However, substantial differences have been observed in the existing methods (e.g. the potential temperature (θ), relative humidity (RH), specific humidity (q) and atmospheric refractivity (N) methods). These differences are associated with the inconsistency of the temperature and humidity profiles in a boundary layer that is not well mixed, the changing measurability of the specific humidity and refractivity with height, the measurement error of humidity instruments within clouds, and the general existence of clouds. This study proposes a method to integrate the information of temperature, humidity and cloud to generate a consistent estimate of h. We apply this method to high vertical resolution (~ 30 m) radiosonde data that were collected at 79 stations over North America during the period from 1998 to 2008. The data are obtained from the Stratospheric Processes and their Role in Climate Data Center (SPARC). The results show good agreement with those from N method as the information of temperature and humidity contained in N; however, cloud effects that are included in our method increased the reliability of our estimated h. From 1988 to 2008, the climatological h over North America was 1675 ± 303 m with a strong east–west gradient: higher values (generally greater than 1800 m) occurred over the Midwest US, and lower values (usually less than 1400 m) occurred over Alaska and the US West Coast.


2012 ◽  
Author(s):  
Klaus Schäfer ◽  
Patrick Wagner ◽  
Stefan Emeis ◽  
Carsten Jahn ◽  
Christoph Muenkel ◽  
...  

2015 ◽  
Vol 20 (1) ◽  
pp. 28-35
Author(s):  
Sajan Shrestha ◽  
Saraswati Shrestha ◽  
Sangeeta Maharjan ◽  
Ram P. Regmi

The characteristic behavior of prevailing boundary layer over the central area of the Kathmandu valley was continuously monitored by deploying a monostatic flat array sodar during the period of 03 to 16 March 2013. Diurnal variation of wind and mixing layer height were chosen to describe the boundary layer activities over the area by considering the day of 12 March 2013 as the representative day for the period of observation. The study shows that central area of the valley remains calm or windless under stable stratification throughout the night and early morning frequently capped by northeasterly or easterly wind aloft. Strong surface level thermal inversion prevails during the period up to the height of 80m above the surface. This inversion tends to lift up as the morning progresses and reaches to the height of 875 m or so close to the noontime. Intrusion of regional winds as westerly/northwesterly and the southerly/southwesterly from the western and southwestern low-mountain passes and the river gorge in the afternoon tends to reduce the noontime mixing layer height to about 700 m. The diurnal variation of wind and mixing layer height suggest that Kathmandu valley possesses a poor air pollution dispersion power and hence the valley is predisposed to high air pollution potential.Journal of Institute of Science and Technology, 2015, 20(1): 28-35


Atmosphere ◽  
2020 ◽  
Vol 11 (5) ◽  
pp. 497 ◽  
Author(s):  
Vladimíra Volná ◽  
Daniel Hladký

This article assessed the links between PM10 pollution and meteorological conditions over the Czech-Polish border area at the Třinec-Kosmos and Věřňovice sites often burdened with high air pollution covering the years 2016–2019. For this purpose, the results of the measurements of special systems (ceilometers) that monitor the atmospheric boundary layer were used in the analysis. Meteorological conditions, including the mixing layer height (MLH), undoubtedly influence the air pollution level. Combinations of meteorological conditions and their influence on PM10 concentrations also vary, depending on the pollution sources of a certain area and the geographical conditions of the monitoring site. Gen1erally, the worst dispersion conditions for the PM10 air pollution level occur at low air temperatures, low wind speed, and low height of the mixing layer along with a wind direction from areas with a higher accumulation of pollution sources. The average PM10 concentrations at temperatures below 1 °C reach the highest values on the occurrence of a mixing layer height of up to 400 m at both sites. The influence of a rising height of the mixing layer at temperatures below 1 °C on the average PM10 concentrations at Třinec-Kosmos site is not as significant as in the case of Věřňovice, where a difference of several tens of µg·m−3 in the average PM10 concentrations was observed between levels of up to 200 m and levels of 200–300 m. The average PM10 hourly concentrations at Třinec-Kosmos were the highest at wind speeds of up to 0.5 m·s−1, at MLH levels of up to almost 600 m; at Věřňovice, the influence of wind speeds of up to 2 m·s−1 was detected. Despite the fact that the most frequent PM10 contributions come to the Třinec-Kosmos site from the SE direction, the average maximum concentration contributions come from the W–N sectors at low wind speeds and MLHs of up to 400 m. In Věřňovice, regardless of the prevailing SW wind direction, sources in the NE–E sector from the site have a crucial influence on the air pollution level caused by PM10.


2020 ◽  
Vol 20 (14) ◽  
pp. 8839-8854 ◽  
Author(s):  
Haofei Wang ◽  
Zhengqiang Li ◽  
Yang Lv ◽  
Ying Zhang ◽  
Hua Xu ◽  
...  

Abstract. The atmospheric mixing layer height (MLH) determines the space in which pollutants diffuse and is thus conducive to the estimation of the pollutant concentration near the surface. The study evaluates the capability of lidar to describe the evolution of the atmospheric mixing layer and then presents a long-term observed climatology of the MLH diurnal cycle. Detection of the mixing layer heights (MLHL and MLHL′) using the wavelet method based on lidar observations was conducted from January 2013 to December 2018 in the Beijing urban area. The two dataset results are compared with radiosonde as case studies and statistical forms. MLHL shows good performance in calculating the convective layer height in the daytime and the residual layer height at night. While MLHL′ has the potential to describe the stable layer height at night, the performance is limited due to the high range gate of lidar. A nearly 6-year climatology for the diurnal cycle of the MLH is calculated for convective and stable conditions using the dataset of MLHL from lidar. The daily maximum MLHL characteristics of seasonal change in Beijing indicate that it is low in winter (1.404±0.751 km) and autumn (1.445±0.837 km) and high in spring (1.647±0.754 km) and summer (1.526±0.581 km). A significant phenomenon is found from 2014 to 2018: the magnitude of the diurnal cycle of MLHL increases year by year, with peak values of 1.291±0.646 km, 1.435±0.755 km, 1.577±0.739 km, 1.597±0.701 km and 1.629±0.751 km, respectively. It may partly benefit from the improvement of air quality. As to converting the column optical depth to surface pollution, the calculated PM2.5 using MLHL data from lidar shows better accuracy than that from radiosonde compared with observational PM2.5. Additionally, the accuracy of calculated PM2.5 using MLHL shows a diurnal cycle in the daytime, with the peak at 14:00 LST. The study provides a significant dataset of MLHL based on measurements and could be an effective reference for atmospheric models of surface air pollution calculation and analysis.


2006 ◽  
Vol 15 (6) ◽  
pp. 647-658 ◽  
Author(s):  
Klaus Schäfer ◽  
Stefan Emeis ◽  
Herbert Hoffmann ◽  
Carsten Jahn

2018 ◽  
Vol 18 (19) ◽  
pp. 14113-14132 ◽  
Author(s):  
Khadak Singh Mahata ◽  
Maheswar Rupakheti ◽  
Arnico Kumar Panday ◽  
Piyush Bhardwaj ◽  
Manish Naja ◽  
...  

Abstract. Residents of the Kathmandu Valley experience severe particulate and gaseous air pollution throughout most of the year, even during much of the rainy season. The knowledge base for understanding the air pollution in the Kathmandu Valley was previously very limited but is improving rapidly due to several field measurement studies conducted in the last few years. Thus far, most analyses of observations in the Kathmandu Valley have been limited to short periods of time at single locations. This study extends the past studies by examining the spatial and temporal characteristics of two important gaseous air pollutants (CO and O3) based on simultaneous observations over a longer period at five locations within the valley and on its rim, including a supersite (at Bode in the valley center, 1345 m above sea level) and four satellite sites: Paknajol (1380 m a.s.l.) in the Kathmandu city center; Bhimdhunga (1522 m a.s.l.), a mountain pass on the valley's western rim; Nagarkot (1901 m a.s.l.), another mountain pass on the eastern rim; and Naikhandi (1233 m a.s.l.), near the valley's only river outlet. CO and O3 mixing ratios were monitored from January to July 2013, along with other gases and aerosol particles by instruments deployed at the Bode supersite during the international air pollution measurement campaign SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – endorsed by the Atmospheric Brown Clouds program of UNEP). The monitoring of O3 at Bode, Paknajol and Nagarkot as well as the CO monitoring at Bode were extended until March 2014 to investigate their variability over a complete annual cycle. Higher CO mixing ratios were found at Bode than at the outskirt sites (Bhimdhunga, Naikhandi and Nagarkot), and all sites except Nagarkot showed distinct diurnal cycles of CO mixing ratio, with morning peaks and daytime lows. Seasonally, CO was higher during premonsoon (March–May) season and winter (December–February) season than during monsoon season (June–September) and postmonsoon (October–November) season. This is primarily due to the emissions from brick industries, which are only operational during this period (January–April), as well as increased domestic heating during winter, and regional forest fires and agro-residue burning during the premonsoon season. It was lower during the monsoon due to rainfall, which reduces open burning activities within the valley and in the surrounding regions and thus reduces sources of CO. The meteorology of the valley also played a key role in determining the CO mixing ratios. The wind is calm and easterly in the shallow mixing layer, with a mixing layer height (MLH) of about 250 m, during the night and early morning. The MLH slowly increases after sunrise and decreases in the afternoon. As a result, the westerly wind becomes active and reduces the mixing ratio during the daytime. Furthermore, there was evidence of an increase in the O3 mixing ratios in the Kathmandu Valley as a result of emissions in the Indo-Gangetic Plain (IGP) region, particularly from biomass burning including agro-residue burning. A top-down estimate of the CO emission flux was made by using the CO mixing ratio and mixing layer height measured at Bode. The estimated annual CO flux at Bode was 4.9 µg m−2 s−1, which is 2–14 times higher than that in widely used emission inventory databases (EDGAR HTAP, REAS and INTEX-B). This difference in CO flux between Bode and other emission databases likely arises from large uncertainties in both the top-down and bottom-up approaches to estimating the emission flux. The O3 mixing ratio was found to be highest during the premonsoon season at all sites, while the timing of the seasonal minimum varied across the sites. The daily maximum 8 h average O3 exceeded the WHO recommended guideline of 50 ppb on more days at the hilltop station of Nagarkot (159 out of 357 days) than at the urban valley bottom sites of Paknajol (132 out of 354 days) and Bode (102 out of 353 days), presumably due to the influence of free-tropospheric air at the high-altitude site (as also indicated by Putero et al., 2015, for the Paknajol site in the Kathmandu Valley) as well as to titration of O3 by fresh NOx emissions near the urban sites. More than 78 % of the exceedance days were during the premonsoon period at all sites. The high O3 mixing ratio observed during the premonsoon period  is of a concern for human health and ecosystems, including agroecosystems in the Kathmandu Valley and surrounding regions.


2011 ◽  
Vol 4 (6) ◽  
pp. 1261-1273 ◽  
Author(s):  
G. Tsaknakis ◽  
A. Papayannis ◽  
P. Kokkalis ◽  
V. Amiridis ◽  
H. D. Kambezidis ◽  
...  

Abstract. This study presents an inter-comparison of two active remote sensors (lidar and ceilometer) to determine the mixing layer height and structure of the Planetary Boundary Layer (PBL) and to retrieve tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol loads/types (urban air pollution, biomass burning and Saharan dust event), implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm) and one CL31 Vaisala S.A. ceilometer (running at 910 nm). Spectral conversions of the ceilometer's data were performed using the Ångström exponent estimated by ultraviolet multi-filter radiometer (UV-MFR) measurements. The inter-comparison was based on two parameters: the mixing layer height determined by the presence of the suspended aerosols and the attenuated backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general, a good agreement was found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined.


Author(s):  
Ventsislav Danchovski

Mixing layer height (MLH) is a crucial parameter for air quality modelling that is still not routinely measured. Common methods for MLH determination use atmospheric profiles recorded by radiosonde but they suffer from course temporal resolution since balloon launching is only twice a day. Recently cheap ceilometers are gaining popularity in the retrieval of MLH diurnal evolution based on aerosol profiles. This study presents a comparison of a proprietary (Jenoptik) and a free available (STRAT) algorithms to retrieve MLH diurnal cycle. The comparison is accomplished in summer season over urban area and radiosonde data is used to estimate MLHs according to parcel, lapse rate, and Richardson methods (the last algorithm is used as a reference in the study) in addition. It was found that STRAT and Jenoptik give lower MLH than radiosonde with an underestimation of about 150m and 650m respectively. Additionally, STRAT showed reasonable performance in tracking of MLH diurnal evolution. Daily MLH maximum of about 2000m was found in the late afternoon (18-19 LT). In contrast, Jenoptik algorithm showed more weaknesses, mainly attributed to its real-time operation and independent processing of a single profile. At night and during morning transition period, both lidar-based methods showed difficulties as MLH was often in the ceilometer’s incomplete overlapping zone so residual or advected aerosol layers aloft were misleadingly reported as mixing layer (ML).


Sign in / Sign up

Export Citation Format

Share Document