scholarly journals Estimation of atmospheric mixing layer height from radiosonde data

2014 ◽  
Vol 7 (6) ◽  
pp. 1701-1709 ◽  
Author(s):  
X. Y. Wang ◽  
K. C. Wang

Abstract. Mixing layer height (h) is an important parameter for understanding the transport process in the troposphere, air pollution, weather and climate change. Many methods have been proposed to determine h by identifying the turning point of the radiosonde profile. However, substantial differences have been observed in the existing methods (e.g. the potential temperature (θ), relative humidity (RH), specific humidity (q) and atmospheric refractivity (N) methods). These differences are associated with the inconsistency of the temperature and humidity profiles in a boundary layer that is not well mixed, the changing measurability of the specific humidity and refractivity with height, the measurement error of humidity instruments within clouds, and the general existence of clouds. This study proposes a method to integrate the information of temperature, humidity and cloud to generate a consistent estimate of h. We apply this method to high vertical resolution (~ 30 m) radiosonde data that were collected at 79 stations over North America during the period from 1998 to 2008. The data are obtained from the Stratospheric Processes and their Role in Climate Data Center (SPARC). The results show good agreement with those from N method as the information of temperature and humidity contained in N; however, cloud effects that are included in our method increased the reliability of our estimated h. From 1988 to 2008, the climatological h over North America was 1675 ± 303 m with a strong east–west gradient: higher values (generally greater than 1800 m) occurred over the Midwest US, and lower values (usually less than 1400 m) occurred over Alaska and the US West Coast.

2014 ◽  
Vol 7 (2) ◽  
pp. 1247-1273
Author(s):  
X. Y. Wang ◽  
K. C. Wang

Abstract. Mixing layer height (h) is an important parameter for understanding the transport process in the troposphere, air pollution, weather and climate change. Many methods have been proposed to determine h by identifying the turning point of the radiosonde profile. However, substantial differences have been observed in the existing methods (e.g., the potential temperature (θ), relative humidity (RH), specific humidity (q) and atmospheric refractivity (N) methods). These differences are associated with the inconsistency of the temperature and humidity profiles in a boundary layer that is not well mixed, the changing measurability of the specific humidity and refractivity with height, the measurement error of humidity instruments within clouds, and the general existence of clouds. This study proposes a method to integrate the information of temperature, humidity and cloud to generate a consistent estimate of h. We apply this method to high vertical resolution (~ 30 m) radiosonde data that were collected at 79 stations over North America during the period from 1998 to 2008; the data are obtained from the Stratospheric Processes and their Role in Climate Data Center (SPARC). The results show good agreement with those from N method as the information of temperature and humidity contained in N; however cloud effects that are included in our method increased the reliability of h. Furthermore, our results agree well with the independent h that was determined from lidar observations. From 1988 to 2008, the climatological h over North America was 1675± 303 m with a strong east–west gradient: higher values (generally greater than 1800 m) occurred over the Midwest US, and lower values (usually less than 1400 m) occurred over Alaska and the US west coast.


2011 ◽  
Vol 4 (6) ◽  
pp. 1261-1273 ◽  
Author(s):  
G. Tsaknakis ◽  
A. Papayannis ◽  
P. Kokkalis ◽  
V. Amiridis ◽  
H. D. Kambezidis ◽  
...  

Abstract. This study presents an inter-comparison of two active remote sensors (lidar and ceilometer) to determine the mixing layer height and structure of the Planetary Boundary Layer (PBL) and to retrieve tropospheric aerosol vertical profiles over Athens, Greece. This inter-comparison was performed under various strongly different aerosol loads/types (urban air pollution, biomass burning and Saharan dust event), implementing two different lidar systems (one portable Raymetrics S.A. lidar system running at 355 nm and one multi-wavelength Raman lidar system running at 355 nm, 532 nm and 1064 nm) and one CL31 Vaisala S.A. ceilometer (running at 910 nm). Spectral conversions of the ceilometer's data were performed using the Ångström exponent estimated by ultraviolet multi-filter radiometer (UV-MFR) measurements. The inter-comparison was based on two parameters: the mixing layer height determined by the presence of the suspended aerosols and the attenuated backscatter coefficient. Additionally, radiosonde data were used to derive the PBL height. In general, a good agreement was found between the ceilometer and the lidar techniques in both inter-compared parameters in the height range from 500 m to 5000 m, while the limitations of each instrument are also examined.


Author(s):  
Ventsislav Danchovski

Mixing layer height (MLH) is a crucial parameter for air quality modelling that is still not routinely measured. Common methods for MLH determination use atmospheric profiles recorded by radiosonde but they suffer from course temporal resolution since balloon launching is only twice a day. Recently cheap ceilometers are gaining popularity in the retrieval of MLH diurnal evolution based on aerosol profiles. This study presents a comparison of a proprietary (Jenoptik) and a free available (STRAT) algorithms to retrieve MLH diurnal cycle. The comparison is accomplished in summer season over urban area and radiosonde data is used to estimate MLHs according to parcel, lapse rate, and Richardson methods (the last algorithm is used as a reference in the study) in addition. It was found that STRAT and Jenoptik give lower MLH than radiosonde with an underestimation of about 150m and 650m respectively. Additionally, STRAT showed reasonable performance in tracking of MLH diurnal evolution. Daily MLH maximum of about 2000m was found in the late afternoon (18-19 LT). In contrast, Jenoptik algorithm showed more weaknesses, mainly attributed to its real-time operation and independent processing of a single profile. At night and during morning transition period, both lidar-based methods showed difficulties as MLH was often in the ceilometer’s incomplete overlapping zone so residual or advected aerosol layers aloft were misleadingly reported as mixing layer (ML).


2016 ◽  
Vol 16 (4) ◽  
pp. 2459-2475 ◽  
Author(s):  
Guiqian Tang ◽  
Jinqiang Zhang ◽  
Xiaowan Zhu ◽  
Tao Song ◽  
Christoph Münkel ◽  
...  

Abstract. The mixing layer is an important meteorological factor that affects air pollution. In this study, the atmospheric mixing layer height (MLH) was observed in Beijing from July 2009 to December 2012 using a ceilometer. By comparison with radiosonde data, we found that the ceilometer underestimates the MLH under conditions of neutral stratification caused by strong winds, whereas it overestimates the MLH when sand-dust is crossing. Using meteorological, PM2.5, and PM10 observational data, we screened the observed MLH automatically; the ceilometer observations were fairly consistent with the radiosondes, with a correlation coefficient greater than 0.9. Further analysis indicated that the MLH is low in autumn and winter and high in spring and summer in Beijing. There is a significant correlation between the sensible heat flux and MLH, and the diurnal cycle of the MLH in summer is also affected by the circulation of mountainous plain winds. Using visibility as an index to classify the degree of air pollution, we found that the variation in the sensible heat and buoyancy term in turbulent kinetic energy (TKE) is insignificant when visibility decreases from 10 to 5 km, but the reduction of shear term in TKE is near 70 %. When visibility decreases from 5 to 1 km, the variation of the shear term in TKE is insignificant, but the decrease in the sensible heat and buoyancy term in TKE is approximately 60 %. Although the correlation between the daily variation of the MLH and visibility is very poor, the correlation between them is significantly enhanced when the relative humidity increases beyond 80 %. This indicates that humidity-related physicochemical processes is the primary source of atmospheric particles under heavy pollution and that the dissipation of atmospheric particles mainly depends on the MLH. The presented results of the atmospheric mixing layer provide useful empirical information for improving meteorological and atmospheric chemistry models and the forecasting and warning of air pollution.


2014 ◽  
Vol 7 (1) ◽  
pp. 173-182 ◽  
Author(s):  
T. Luo ◽  
R. Yuan ◽  
Z. Wang

Abstract. Atmospheric boundary layer (ABL) processes are important in climate, weather and air quality. A better understanding of the structure and the behavior of the ABL is required for understanding and modeling of the chemistry and dynamics of the atmosphere on all scales. Based on the systematic variations of the ABL structures over different surfaces, different lidar-based methods were developed and evaluated to determine the boundary layer height and mixing layer height over land and ocean. With Atmospheric Radiation Measurement Program (ARM) Climate Research Facility (ACRF) micropulse lidar (MPL) and radiosonde measurements, diurnal and season cycles of atmospheric boundary layer depth and the ABL vertical structure over ocean and land are analyzed. The new methods are then applied to satellite lidar measurements. The aerosol-derived global marine boundary layer heights are evaluated with marine ABL stratiform cloud top heights and results show a good agreement between them.


2014 ◽  
Vol 153 (1) ◽  
pp. 163-164 ◽  
Author(s):  
Giampietro Casasanta ◽  
Ilaria Pietroni ◽  
Igor Petenko ◽  
Stefania Argentini

2017 ◽  
Author(s):  
Qingqing Wang ◽  
Yele Sun ◽  
Weiqi Xu ◽  
Wei Du ◽  
Libo Zhou ◽  
...  

Abstract. We conducted the first real-time continuous vertical measurements of particle extinction (bext), gaseous NO2, and black carbon (BC) from ground level to 260 m during two severe winter haze episodes at an urban site in Beijing, China. Our results illustrated four distinct types of vertical profiles: 1) uniform vertical distributions (37 % of the time) with vertical differences less than 5 %; 2) higher values at lower altitudes (29 %); 3) higher values at higher altitudes (16 %), and 4) significant decreases at the heights of ~ 100–150 m (14 %). Further analysis demonstrated that vertical convection as indicated by mixing layer height, temperature inversion, and local emissions are three major factors affecting the changes in vertical profiles. Particularly, the formation of Type 4 was strongly associated with the stratified layer that was formed due to the interactions of different air masses and temperature inversions. Aerosol composition was substantially different below and above the transition heights with ~ 20–30 % higher contributions of local sources (e.g., biomass burning and cooking) at lower altitudes. A more detailed evolution of vertical profiles and their relationship with the changes in source emissions, mixing layer height, and aerosol chemistry was illustrated by a case study. BC showed overall similar vertical profiles as those of bext (R2 = 0.92 and 0.69 in November and January, respectively). While NO2 was correlated with bext for most of the time, the vertical profiles of bext/NO2 varied differently for different profiles, indicating the impact of chemical transformation on vertical profiles. Our results also showed that more comprehensive vertical measurements (e.g., more aerosol and gaseous species) at higher altitudes in the megacities are needed for a better understanding of the formation mechanisms and evolution of severe haze episodes in China.


2012 ◽  
Author(s):  
Klaus Schäfer ◽  
Patrick Wagner ◽  
Stefan Emeis ◽  
Carsten Jahn ◽  
Christoph Muenkel ◽  
...  

2014 ◽  
Vol 151 (3) ◽  
pp. 597-608 ◽  
Author(s):  
Giampietro Casasanta ◽  
Ilaria Pietroni ◽  
Igor Petenko ◽  
Stefania Argentini

2015 ◽  
Vol 20 (1) ◽  
pp. 28-35
Author(s):  
Sajan Shrestha ◽  
Saraswati Shrestha ◽  
Sangeeta Maharjan ◽  
Ram P. Regmi

The characteristic behavior of prevailing boundary layer over the central area of the Kathmandu valley was continuously monitored by deploying a monostatic flat array sodar during the period of 03 to 16 March 2013. Diurnal variation of wind and mixing layer height were chosen to describe the boundary layer activities over the area by considering the day of 12 March 2013 as the representative day for the period of observation. The study shows that central area of the valley remains calm or windless under stable stratification throughout the night and early morning frequently capped by northeasterly or easterly wind aloft. Strong surface level thermal inversion prevails during the period up to the height of 80m above the surface. This inversion tends to lift up as the morning progresses and reaches to the height of 875 m or so close to the noontime. Intrusion of regional winds as westerly/northwesterly and the southerly/southwesterly from the western and southwestern low-mountain passes and the river gorge in the afternoon tends to reduce the noontime mixing layer height to about 700 m. The diurnal variation of wind and mixing layer height suggest that Kathmandu valley possesses a poor air pollution dispersion power and hence the valley is predisposed to high air pollution potential.Journal of Institute of Science and Technology, 2015, 20(1): 28-35


Sign in / Sign up

Export Citation Format

Share Document