scholarly journals Peroxy radical chemistry and the volatility basis set

2020 ◽  
Vol 20 (2) ◽  
pp. 1183-1199 ◽  
Author(s):  
Meredith Schervish ◽  
Neil M. Donahue

Abstract. Gas-phase autoxidation of organics can generate highly oxygenated organic molecules (HOMs) and thus increase secondary organic aerosol production and enable new-particle formation. Here we present a new implementation of the volatility basis set (VBS) that explicitly resolves peroxy radical (RO2) products formed via autoxidation. The model includes a strong temperature dependence for autoxidation as well as explicit termination of RO2, including reactions with NO, HO2, and other RO2. The RO2 cross-reactions can produce dimers (ROOR). We explore the temperature and NOx dependence of this chemistry, showing that temperature strongly influences the intrinsic volatility distribution and that NO can suppress autoxidation under conditions typically found in the atmosphere.

2019 ◽  
Author(s):  
Meredith Schervish ◽  
Neil M. Donahue

Abstract. Gas-phase auto-oxidation of organics can generate highly-oxygenated organic molecules (HOMs) and thus increase secondary organic aerosol production and enable new-particle formation. Here we present a new implementation of the Volatility Basis Set (VBS) that explicitly resolves peroxy radicals (RO2) formed via auto-oxidation. The model includes a strong temperature dependence for auto oxidation as well as explicit termination of RO2, including reactions with NO, HO2, and other RO2. The RO2 cross reactions can produce dimers (ROOR). We explore the temperature and NOx dependence of this chemistry, showing that temperature strongly influences the intrinsic volatility distribution and that NO can suppress auto-oxidation under conditions typically found in the atmosphere.


2010 ◽  
Vol 10 (12) ◽  
pp. 30205-30277 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25%, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15% oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2011 ◽  
Vol 11 (13) ◽  
pp. 6639-6662 ◽  
Author(s):  
M. Shrivastava ◽  
J. Fast ◽  
R. Easter ◽  
W. I. Gustafson ◽  
R. A. Zaveri ◽  
...  

Abstract. The Weather Research and Forecasting model coupled with chemistry (WRF-Chem) is modified to include a volatility basis set (VBS) treatment of secondary organic aerosol formation. The VBS approach, coupled with SAPRC-99 gas-phase chemistry mechanism, is used to model gas-particle partitioning and multiple generations of gas-phase oxidation of organic vapors. In addition to the detailed 9-species VBS, a simplified mechanism using 2 volatility species (2-species VBS) is developed and tested for similarity to the 9-species VBS in terms of both mass and oxygen-to-carbon ratios of organic aerosols in the atmosphere. WRF-Chem results are evaluated against field measurements of organic aerosols collected during the MILAGRO 2006 campaign in the vicinity of Mexico City. The simplified 2-species mechanism reduces the computational cost by a factor of 2 as compared to 9-species VBS. Both ground site and aircraft measurements suggest that the 9-species and 2-species VBS predictions of total organic aerosol mass as well as individual organic aerosol components including primary, secondary, and biomass burning are comparable in magnitude. In addition, oxygen-to-carbon ratio predictions from both approaches agree within 25 %, providing evidence that the 2-species VBS is well suited to represent the complex evolution of organic aerosols. Model sensitivity to amount of anthropogenic semi-volatile and intermediate volatility (S/IVOC) precursor emissions is also examined by doubling the default emissions. Both the emission cases significantly under-predict primary organic aerosols in the city center and along aircraft flight transects. Secondary organic aerosols are predicted reasonably well along flight tracks surrounding the city, but are consistently over-predicted downwind of the city. Also, oxygen-to-carbon ratio predictions are significantly improved compared to prior studies by adding 15 % oxygen mass per generation of oxidation; however, all modeling cases still under-predict these ratios downwind as compared to measurements, suggesting a need to further improve chemistry parameterizations of secondary organic aerosol formation.


2018 ◽  
Vol 18 (9) ◽  
pp. 6171-6186 ◽  
Author(s):  
Penglin Ye ◽  
Yunliang Zhao ◽  
Wayne K. Chuang ◽  
Allen L. Robinson ◽  
Neil M. Donahue

Abstract. We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m−3, these mass yields are 2–3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an aerosol mass spectrometer was around −0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low-volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.


2006 ◽  
Vol 6 (5) ◽  
pp. 10275-10297 ◽  
Author(s):  
C. Stenby ◽  
U. Pöschl ◽  
P. von Hessberg ◽  
M. Bilde ◽  
O. J. Nielsen ◽  
...  

Abstract. The temperature dependence of secondary organic aerosol (SOA) formation from ozonolysis of β-pinene was studied in a flow reactor at 263–303 K and 1007 hPa. The observed SOA yields were of similar magnitude as predicted by a two-product model based on detailed gas phase chemistry (Jenkin, 2004), reaching maximum values of 0.22–0.39 at high particle mass concentrations. However, the measurement data exhibited significant deviations (up to 50%) from the predicted linear dependence on inverse temperature. When fitting the measurement data with a two-product model, we found that both the partitioning coefficients (Kom,i) and the stoichiometric yields (αi) of the low-volatile and semi-volatile species vary with temperature. The results indicate that not only the reaction product vapour pressures but also the relative contributions of different gas-phase or multiphase reaction channels are dependent on temperature. We suggest that the modelling of secondary organic aerosol formation in the atmosphere needs to take into account the effects of temperature on the pathways and kinetics of the involved chemical reactions as well as on the gas-particle partitioning of the reaction products.


2018 ◽  
Vol 18 (19) ◽  
pp. 13813-13838 ◽  
Author(s):  
Sailaja Eluri ◽  
Christopher D. Cappa ◽  
Beth Friedman ◽  
Delphine K. Farmer ◽  
Shantanu H. Jathar

Abstract. Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can be photooxidized in the atmosphere to form secondary organic aerosol (SOA). In some cases, this SOA can exceed direct emissions of primary organic aerosol (POA). Jathar et al. (2017a) recently reported on experiments that used an oxidation flow reactor (OFR) to measure the photochemical production of SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel), and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this work, we used two different SOA models, the Volatility Basis Set (VBS) model and the Statistical Oxidation Model (SOM), to simulate the formation and composition of SOA for those experiments. Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and reactive POA; SOA production from semi-volatile, intermediate-volatility, and volatile organic compounds (SVOC, IVOC and VOC); NOx-dependent parameterizations; multigenerational gas-phase chemistry; and kinetic gas–particle partitioning. Both frameworks demonstrated that for model predictions of SOA mass to agree with measurements across all engine load–fuel–aftertreatment combinations, it was necessary to model the kinetically limited gas–particle partitioning in OFRs and account for SOA formation from IVOCs, which were on average found to account for 70 % of the model-predicted SOA. Accounting for IVOCs, however, resulted in an average underprediction of 28 % for OA atomic O : C ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) from the SOM compared favorably to gas-phase measurements from a chemical ionization mass spectrometer (CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model–measurement comparisons were improved on using SOA parameterizations corrected for vapor wall loss. As OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, models such as those developed in this work can be used to interpret the OFR data.


2013 ◽  
Vol 10 (3) ◽  
pp. 194 ◽  
Author(s):  
Haofei Zhang ◽  
Harshal M. Parikh ◽  
Jyoti Bapat ◽  
Ying-Hsuan Lin ◽  
Jason D. Surratt ◽  
...  

Environmental context Fine particulate matter (PM2.5) in the Earth’s atmosphere plays an important role in climate change and human health, in which secondary organic aerosol (SOA) that forms from the photooxidation of volatile organic compounds (VOCs) has a significant contribution. SOA derived from isoprene, the most abundant non-methane VOC emitted into the Earth’s atmosphere, has been widely studied to interpret its formation mechanisms. However, the ability to predict isoprene SOA using current models remains difficult due to the lack of understanding of isoprene chemistry. Abstract Secondary organic aerosol (SOA) formation from the photooxidation of isoprene was simulated against smog chamber experiments with varied concentrations of isoprene, nitrogen oxides (NOx=NO + NO2) and ammonium sulfate seed aerosols. A semi-condensed gas-phase isoprene chemical mechanism (ISO-UNC) was coupled with different aerosol-phase modelling frameworks to simulate SOA formation, including: (1) the Odum two-product approach, (2) the 1-D volatility basis-set (VBS) approach and (3) a new condensed kinetic model based upon the gas-particle partitioning theory and reactive uptake processes. The first two approaches are based upon empirical parameterisations from previous studies. The kinetic model uses a gas-phase mechanism to explicitly predict the major intermediate precursors, namely the isoprene-derived epoxides, and hence simulate SOA formation. In general, they all tend to significantly over predict SOA formation when semivolatile concentrations are higher because more semivolatiles are forced to produce SOA in the models to maintain gas-particle equilibrium; yet the data indicate otherwise. Consequently, modified dynamic parameterised models, assuming non-equilibrium partitioning, were incorporated and could improve the model performance. In addition, the condensed kinetic model was expanded by including an uptake limitation representation so that reactive uptake processes slow down or even stop; this assumes reactive uptake reactions saturate seed aerosols. The results from this study suggest that isoprene SOA formation by reactive uptake of gas-phase precursors is likely limited by certain particle-phase features, and at high gas-phase epoxide levels, gas-particle equilibrium is not obtained. The real cause of the limitation needs further investigation; however, the modified kinetic model in this study could tentatively be incorporated in large-scale SOA models given its predictive ability.


2017 ◽  
Author(s):  
Penglin Ye ◽  
Yunliang Zhao ◽  
Wayne K. Chuang ◽  
Allen L. Robinson ◽  
Neil M. Donahue

Abstract. We have investigated the production of secondary organic aerosol (SOA) from pinanediol (PD), a precursor chosen as a semi-volatile surrogate for first-generation oxidation products of monoterpenes. Observations at the CLOUD facility at CERN have shown that oxidation of organic compounds such as PD can be an important contributor to new-particle formation. Here we focus on SOA mass yields and chemical composition from PD photo-oxidation in the CMU smog chamber. To determine the SOA mass yields from this semi-volatile precursor, we had to address partitioning of both the PD and its oxidation products to the chamber walls. After correcting for these losses, we found OA loading dependent SOA mass yields from PD oxidation that ranged between 0.1 and 0.9 for SOA concentrations between 0.02 and 20 µg m−3, these mass yields are 2–3 times larger than typical of much more volatile monoterpenes. The average carbon oxidation state measured with an Aerosol Mass Spectrometer was around −0.7. We modeled the chamber data using a dynamical two-dimensional volatility basis set and found that a significant fraction of the SOA comprises low volatility organic compounds that could drive new-particle formation and growth, which is consistent with the CLOUD observations.


2017 ◽  
Author(s):  
Sailaja Eluri ◽  
Christopher D. Cappa ◽  
Beth Friedman ◽  
Delphine K. Farmer ◽  
Shantanu H. Jathar

Abstract. Laboratory-based studies have shown that combustion sources emit volatile organic compounds that can be photo-oxidized in the atmosphere to form secondary organic aerosol (SOA). In some cases, this SOA can exceed direct emissions of primary organic aerosol (POA). Jathar et al. (2017) recently reported on experiments that used an oxidation flow reactor (OFR) to measure the photochemical production of SOA from a diesel engine operated at two different engine loads (idle, load), two fuel types (diesel, biodiesel) and two aftertreatment configurations (with and without an oxidation catalyst and particle filter). In this work, we used two different SOA models, the volatility basis set (VBS) model and the statistical oxidation model (SOM), to simulate the formation and composition of SOA for those experiments. Leveraging recent laboratory-based parameterizations, both frameworks accounted for a semi-volatile and reactive POA; SOA production from semi-volatile, intermediate-volatility and volatile organic compounds (SVOC, IVOC and VOC); multigenerational gas-phase chemistry; and kinetic gas/particle partitioning. Both frameworks demonstrated that for model predictions of SOA mass to agree with measurements across all engine load-fuel-aftertreatment combinations, it was necessary to model the kinetically-limited gas-particle partitioning in OFRs as well as account for SOA formation from IVOCs, which were found to account for more than 90 % of the model-predicted SOA. Accounting for IVOCs however resulted in an underprediction of a factor of two for OA atomic O : C ratios. Model predictions of the gas-phase organic compounds (resolved in carbon and oxygen space) from the SOM compared favorably to gas-phase measurements from a Chemical Ionization Mass Spectrometer (CIMS), substantiating the semi-explicit chemistry captured by the SOM. Model-measurement comparisons were improved on using vapor wall-loss corrected SOA parameterizations. As OFRs are increasingly used to study SOA formation and evolution in laboratory and field environments, models such as those developed in this work can be used to interpret the OFR data.


Sign in / Sign up

Export Citation Format

Share Document