Supplementary material to "Field measurements of trace gases and aerosols emitted by peat fires in Central Kalimantan, Indonesia during the 2015 El Niño"

Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  
2016 ◽  
Vol 16 (18) ◽  
pp. 11711-11732 ◽  
Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  

Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional–global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs; grams of a compound per kilogram biomass burned) for up to  ∼  90 gases, including CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n  =  35), indicating essentially pure smoldering combustion, and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g kg−1) were carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %), and other gases compared with widely used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g kg−1. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measurable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2 kg−1 fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångström exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g kg−1) and the mass absorption coefficient (MAC, m2 g−1) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g kg−1). Aerosol absorption at 405 nm was  ∼  52 times larger than at 870 nm and BrC contributed  ∼  96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC ( ∼  0.1) for the bulk OC, as expected for the low BC/OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 =  0.65).


2016 ◽  
Author(s):  
Chelsea E. Stockwell ◽  
Thilina Jayarathne ◽  
Mark A. Cochrane ◽  
Kevin C. Ryan ◽  
Erianto I. Putra ◽  
...  

Abstract. Peat fires in Southeast Asia have become a major annual source of trace gases and particles to the regional-global atmosphere. The assessment of their influence on atmospheric chemistry, climate, air quality, and health has been uncertain partly due to a lack of field measurements of the smoke characteristics. During the strong 2015 El Niño event we deployed a mobile smoke sampling team in the Indonesian province of Central Kalimantan on the island of Borneo and made the first, or rare, field measurements of trace gases, aerosol optical properties, and aerosol mass emissions for authentic peat fires burning at various depths in different peat types. This paper reports the trace gas and aerosol measurements obtained by Fourier transform infrared spectroscopy, whole air sampling, photoacoustic extinctiometers (405 and 870 nm), and a small subset of the data from analyses of particulate filters. The trace gas measurements provide emission factors (EFs, g compound per kg biomass burned) for CO2, CO, CH4, non-methane hydrocarbons up to C10, 15 oxygenated organic compounds, NH3, HCN, NOx, OCS, HCl, etc.; up to ~90 gases in all. The modified combustion efficiency (MCE) of the smoke sources ranged from 0.693 to 0.835 with an average of 0.772 ± 0.053 (n = 35) indicating essentially pure smoldering combustion and the emissions were not initially strongly lofted. The major trace gas emissions by mass (EF as g/kg) were: carbon dioxide (1564 ± 77), carbon monoxide (291 ± 49), methane (9.51 ± 4.74), hydrogen cyanide (5.75 ± 1.60), acetic acid (3.89 ± 1.65), ammonia (2.86 ± 1.00), methanol (2.14 ± 1.22), ethane (1.52 ± 0.66), dihydrogen (1.22 ± 1.01), propylene (1.07 ± 0.53), propane (0.989 ± 0.644), ethylene (0.961 ± 0.528), benzene (0.954 ± 0.394), formaldehyde (0.867 ± 0.479), hydroxyacetone (0.860 ± 0.433), furan (0.772 ± 0.035), acetaldehyde (0.697 ± 0.460), and acetone (0.691 ± 0.356). These field data support significant revision of the EFs for CO2 (−8 %), CH4 (−55 %), NH3 (−86 %), CO (+39 %) and other gases compared with widely-used recommendations for tropical peat fires based on a lab study of a single sample published in 2003. BTEX compounds (benzene, toluene, ethylbenzene, xylenes) are important air toxics and aerosol precursors and were emitted in total at 1.5 ± 0.6 g/kg. Formaldehyde is probably the air toxic gas most likely to cause local exposures that exceed recommended levels. The field results from Kalimantan were in reasonable agreement with recent (2012) lab measurements of smoldering Kalimantan peat for “overlap species,” lending importance to the lab finding that burning peat produces large emissions of acetamide, acrolein, methylglyoxal, etc., which were not measureable in the field with the deployed equipment and implying value in continued similar efforts. The aerosol optical data measured include EFs for the scattering and absorption coefficients (EF Bscat and EF Babs, m2/kg fuel burned) and the single scattering albedo (SSA) at 870 and 405 nm, as well as the absorption Ångstrӧm exponents (AAE). By coupling the absorption and co-located trace gas and filter data we estimated black carbon (BC) EFs (g/kg) and the mass absorption coefficient (MAC, m2/g) for the bulk organic carbon (OC) due to brown carbon (BrC). Consistent with the minimal flaming, the emissions of BC were negligible (0.0055 ± 0.0016 g/kg). Aerosol absorption at 405 nm was ~52 times larger than at 870 nm and BrC contributed ~96 % of the absorption at 405 nm. Average AAE was 4.97 ± 0.65 (range, 4.29–6.23). The average SSA at 405 nm (0.974 ± 0.016) was marginally lower than the average SSA at 870 nm (0.998 ± 0.001). These data facilitate modeling climate-relevant aerosol optical properties across much of the UV/visible spectrum and the high AAE and lower SSA at 405 nm demonstrate the dominance of absorption by the organic aerosol. Comparing the Babs at 405 nm to the simultaneously measured OC mass on filters suggests a low MAC (~0.1) for the bulk OC, as expected for the low BC / OC ratio in the aerosol. The importance of pyrolysis (at lower MCE), as opposed to glowing (at higher MCE), in producing BrC is seen in the increase of AAE with lower MCE (r2 = 0.65).


2020 ◽  
Author(s):  
Saginela Ravindra Babu ◽  
Madineni Venkat Ratnam ◽  
Ghouse Basha ◽  
Shantanu Kumar Pani ◽  
Neng-Huei Lin

Abstract. In this work, the detailed changes in the structure, dynamics and trace gases within the Asian summer monsoon anticyclone (ASMA) during extreme El Niño of 2015–16 is delineated by using Aura Microwave Limb Sounder (MLS) measurements, COSMIC Radio Occultation (RO) temperature, and NCEP reanalysis products. We have considered the individual months of July and August 2015 for the present study. The results show that the ASMA structure was quite different in 2015 as compared to the long-term (2005–2014) mean. In July, the spatial extension of the ASMA shows larger than the long-term mean in all the regions except over northeastern Asia, where, it exhibits a strong southward shift in its position. The ASMA splits into two and western Pacific mode is evident in August. Interestingly, the subtropical westerly jet (STJ) shifted southward from its normal position over northeastern Asia as resulted mid latitude air moved southward in 2015. Intense Rossby wave breaking events along with STJ are also found in July 2015. Due to these dynamical changes in the ASMA, pronounced changes in the ASMA tracers are noticed in 2015 compared to the long-term mean. A 30 % (20 %) decrease in carbon monoxide (water vapor) at 100 hPa is observed in July over most of the ASMA region, whereas in August the drop is strongly concentrated in the edges of the ASMA. Prominent increase of O3 (> 40 %) at 100 hPa is clearly evident within the ASMA in July, whereas in August the increase is strongly located (even at 121 hPa) over the western edges of the ASMA. Further, the temperature around the tropopause shows significant positive anomalies (~ 5 K) within the ASMA in 2015. Overall, warming of the tropopause region due to the increased O3 weakens the anticyclone and further supported the weaker ASMA in 2015 reported by previous studies.


2004 ◽  
Vol 4 (8) ◽  
pp. 2145-2160 ◽  
Author(s):  
B. Langmann ◽  
A. Heil

Abstract. Smoke-haze episodes caused by vegetation and peat fires affect parts of Indonesia every year with significant impacts on human health and climate. Particularly fires in degenerated peat areas release huge amounts of trace gases, e.g. CO2, CO and CH4, and particles into the atmosphere, exceeding by far the emissions per unit area from fires in surface vegetation. However, only limited information is available about the current distribution of pristine and degenerated peat areas in Indonesia, their depth, drainage condition and modification by fire. Particularly during the strong El Niño event in 1997/1998 a huge uncertainty exists about the contribution of Indonesian peat fire emissions to the measured increase of atmospheric CO2, as the published estimates of the peat area burned differ considerably. In this paper we study the contribution of peat fire emissions in Indonesia during the El Niño event 1997/1998. A regional three-dimensional atmosphere-chemistry model is applied over Indonesia using two emission estimates. These vegetation and peat fire emission inventories for Indonesia are set up in 0.5° resolution in weekly intervals and differ only in the size of the fire affected peat areas. We evaluate simulated rainfall and particle concentrations by comparison with observations to draw conclusions on the total carbon emissions released from the vegetation and peat fires in Indonesia in 1997/1998.


2018 ◽  
Author(s):  
Qixing Ji ◽  
Mark A. Altabet ◽  
Hermann W. Bange ◽  
Michelle I. Graco ◽  
Xiao Ma ◽  
...  

2019 ◽  
Author(s):  
Ghouse Basha ◽  
M. Venkat Ratnam ◽  
Pangaluru Kishore ◽  
S. Ravindrababu ◽  
Isabella Velicogna

Abstract. The Asian Summer Monsoon Anticyclone (ASMA) persisting during monsoon season in the upper troposphere and lower stratosphere (UTLS) region play an important role in confining the trace gases and aerosols for a longer period thus affects regional and global climate. Our understanding on these trace gases and aerosols variability in the ASMA is limited. In this study, the effect of the ASMA on the trace gases (Water Vapour (WV), Ozone (O3), Carbon Monoxide (CO)) and aerosols (Attenuated Scattering Ratio (ASR)) obtained from long-term (2006–2016) satellite measurements is investigated. Since the ASMA is present in the UTLS region, its influence on the tropopause characteristics is also explored. Higher tropopause altitude, WV, CO and ASR confining to the ASMA region is observed, whereas tropopause temperatures and O3 are found low. There exists large inter-annual variation in the ASMA and hence its effect on these trace gases and aerosols are also seen clearly. A significant relationship is also observed between the phases of Quasi-Biannual Oscillation (QBO) and El Niño Southern Oscillation (ENSO) on the trace gases and ASR, including the tropopause when measurements in the ASMA region are subject to multivariate regression analysis. Further, the influence of the Indian summer monsoon (ISM) activity on the ASMA trace gases and aerosols is studied with respect to active and break spells of monsoon, strong and weak monsoon years, strong La Niña, El Niño years. Results show a significant increase in WV, CO and decrease in O3 during the active phase of the ISM, strong monsoon years and strong La Niña years in the ASMA. Enhancement in the ASR values during the strong monsoon years and strong La Niña years is observed. Thus, it is prudent to conclude that the dynamics of the ASMA play an important role in the confinement of several trace gases and aerosols and suggested to consider the activity of summer monsoon while dealing with them at sub-seasonal scales.


Sign in / Sign up

Export Citation Format

Share Document