scholarly journals Characteristics of Ground Ozone Concentration over Beijing from 2004 to 2015: Trends, Transport, and Effects of Reductions

Author(s):  
Nianliang Cheng ◽  
Yunting Li ◽  
Dawei Zhang ◽  
Tian Chen ◽  
Feng Sun ◽  
...  

Abstract. Based on the hourly ozone monitoring data during 2004–2015 in urban area and at DL background station in Beijing, a comprehensive discussion of the characteristics of ozone concentration was conducted. Annual concentration of daily maximum 1 h ozone (O3 1 h) was all increasing at urban sites (1.79 ppbv yr−1) and DL background station (2.05 ppbv yr−1) while daily maximum 8 h average ozone concentration (O3 8 h) was increasing in urban area (1.14 ppbv yr−1) and slightly decreasing at DL background station (−0.47 ppbv yr−1) from 2004 to 2015 due to different ozone sensitivity regimes and ratios of NO2/NO. Diurnal variation of ozone peaks obtained at downwind DL station were about 1 h later than that in urban area from May to October in different years and concentration of ozone at a DL background station was much higher than that of urban sites. Moreover, the difference of ozone peaks between urban sites and DL background station was significantly becoming smaller in recent years, which may be related to the regional ozone transport and the expansion urbanization of Beijing. Based on the joint efforts of regional air pollution prevention and control,Beijing achieved Sep 3 military blue. Calculated average concentrations of CO, NO2, and O3 in S2 (Aug 20~31, 2015) and S3 (Sep 01~03, 2015) decreased by 31.48 %, 43.97 %, and 13.21 % at urban sites, and by 20.93 %, 57.10 %, and 23.62 % at DL station, respectively compared with those in S1 (Aug 01~19,2015) and S4 Sep 04~30, 2015). A reduction of local anthropogenic emissions such as VOCs and NOx could reduce ozone efficiently especially in downwind areas of Beijing and made the ozone peaks decrease significantly and appear 2~3 h earlier compared to the scenarios of no emission reductions. Compared to the increasing ozone during Asia-Pacific Economic Cooperation (APEC)meeting period,to decrease the ozone concentration in Beijing, VOCs emissions should be reduced larger and be controlled stricter than that of NOx in Beijing and the policy of regional air pollution joint prevention and control should still be promoted unswervingly and jointly in the further.

2016 ◽  
Vol 04 (04) ◽  
pp. 1650027
Author(s):  
Rong ZHU

Analysis of the meteorological conditions for atmospheric pollutant dispersion before and after the 2014 APEC meeting shows very significant effects of air pollution prevention and control measures on the meeting. It proves that the proper measures to control air pollution in the Beijing-Tianjin-Hebei Region are: establishing a regional emergency response mechanism to reduce emissions in the case of heavy air pollution, strengthening the local emergency response measures for emission reduction, and enhancing the early warning system for weather conditions conducive to heavy air pollution.


2021 ◽  
Author(s):  
Min Zhou ◽  
Guangjie Zheng ◽  
Hongli Wang ◽  
Liping Qiao ◽  
Shuhui Zhu ◽  
...  

Abstract. Aerosol acidity plays a key role in regulating the chemistry and toxicity of atmospheric aerosol particles. The trend of aerosol pH and its drivers are crucial in understanding the multiphase formation pathways of aerosols. Here, we reported the first trend analysis of aerosol pH from 2011 to 2019 in eastern China. The implementation of the Air Pollution Prevention and Control Action Plan leads to −35.8 %, −37.6 %, −9.6 %, −81.0 % and 1.2 % changes of PM2.5, SO42−, NHx, NVCs and NO3− in YRD during this period. Different from the fast changes of aerosol compositions due to the implementation of the Air Pollution Prevention and Control Action Plan, aerosol pH shows a moderate change of −0.24 unit over the 9 years. Besides the multiphase buffer effect, the opposite effects of SO42− and non-volatile cations changes play key roles in determining the moderate pH trend, contributing to a change of +0.38 and −0.35 unit, respectively. Seasonal variations in aerosol pH were mainly driven by the temperature, while the diurnal variations were driven by both temperature and relative humidity. In the future, SO2, NOx and NH3 emissions are expected to be further reduced by 86.9 %, 74.9 % and 41.7 % in 2050 according to the best health effect pollution control scenario (SSP1-26-BHE). The corresponding aerosol pH in eastern China is estimated to increase by ~0.9, resulting in 8 % more NO3− and 35 % less NH4+ partitioning/formation in the aerosol phase, which suggests a largely reduced benefit of NH3 and NOx emission control in mitigating haze pollution in eastern China.


Sign in / Sign up

Export Citation Format

Share Document