Review of ``PathfinderTURB: an automatic boundary layer algorithm. Development, validation and application to study the impact on in-situ measurements at the Jungfraujoch.'' by Poltera et al., 2017

2017 ◽  
Author(s):  
Anonymous
2021 ◽  
Vol 13 (10) ◽  
pp. 1927
Author(s):  
Fuqin Li ◽  
David Jupp ◽  
Thomas Schroeder ◽  
Stephen Sagar ◽  
Joshua Sixsmith ◽  
...  

An atmospheric correction algorithm for medium-resolution satellite data over general water surfaces (open/coastal, estuarine and inland waters) has been assessed in Australian coastal waters. In situ measurements at four match-up sites were used with 21 Landsat 8 images acquired between 2014 and 2017. Three aerosol sources (AERONET, MODIS ocean aerosol and climatology) were used to test the impact of the selection of aerosol optical depth (AOD) and Ångström coefficient on the retrieved accuracy. The initial results showed that the satellite-derived water-leaving reflectance can have good agreement with the in situ measurements, provided that the sun glint is handled effectively. Although the AERONET aerosol data performed best, the contemporary satellite-derived aerosol information from MODIS or an aerosol climatology could also be as effective, and should be assessed with further in situ measurements. Two sun glint correction strategies were assessed for their ability to remove the glint bias. The most successful one used the average of two shortwave infrared (SWIR) bands to represent sun glint and subtracted it from each band. Using this sun glint correction method, the mean all-band error of the retrieved water-leaving reflectance at the Lucinda Jetty Coastal Observatory (LJCO) in north east Australia was close to 4% and unbiased over 14 acquisitions. A persistent bias in the other strategy was likely due to the sky radiance being non-uniform for the selected images. In regard to future options for an operational sun glint correction, the simple method may be sufficient for clear skies until a physically based method has been established.


2021 ◽  
Author(s):  
Amanda T. Nylund ◽  
Rickard Bensow ◽  
Mattias Liefvendahl ◽  
Arash Eslamdoost ◽  
Anders Tengberg ◽  
...  

<p>This interdisciplinary study with implications for fate and transport of pollutants from shipping, investigates the previously overlooked phenomenon of ship induced mixing. When a ship moves through water, the hull and propeller induce a long-lasting turbulent wake. Natural waters are usually stratified, and the stratification influences both the vertical and horizontal extent of the wake. The altered turbulent regime in shipping lanes governs the distribution of discharged pollutants, e.g. PAHs, metals, nutrients and non-indigenous species. The ship related pollutant load follows the trend in volumes of maritime trade, which has almost tripled since the 1980s. In heavily trafficked areas there may be one ship passage every ten minutes; today shipping constitutes a significant source of pollution.</p><p>To understand the environmental impact of shipping related pollutants, it is essential to know their fate following regional scale transport. However, previous modelling efforts assuming discharge at the surface will not adequately reflect the input values in the regional models. Therefore, it is urgent to bridge the gaps between the spatiotemporal scales from high-resolution numerical modeling of the flow hydrodynamics around the ship, mixing processes and interaction of the ship and wake with stratification, and parameterization in regional oceanographic modeling. Here this knowledge gap is addressed by combining an array of methods; in situ measurements, remote sensing and numerical flow modeling.</p><p>A bottom-mounted Acoustic Doppler Current Profiler was placed under a ship lane, for <em>in-situ</em> measurements of the vertical and temporal expansion of turbulent wakes. In addition, <em>ex-situ</em> measurements with Landsat 8 Thermal Infrared Sensor were used to estimate the longevity and spatial extent of the thermal signal from ship wakes. The computational modelling was conducted using well resolved 3D RANS modelling for the hull and the near wake (up to five ship lengths aft), a method typically used for the near wake behaviour in analysing the propulsion system. As this is not feasible to use for a far wake analysis, the predicted wake is then used as input for a 2D+time modelling for the sustained wake up to 30min after the ship passage. These results, both from measurements and numerical models, are then combined to analyse how ship-induced turbulence influence at what depth discharged pollutants will be found.</p><p>This first step to cover the mesoscales of the turbulent ship wake is necessary to assess the impact of ship related pollution. In-situ measurements show median wake depth 13.5m (max 31.5m) and median longevity 10min (max 29min). Satellite data show median thermal wake signal 13.7km (max 62.5km). A detailed simulation model will only be possible to use for the first few 100m of the ship wake, but the coupling to a simplified 2D+time modelling shows a promising potential to bridge our understanding of the impact of the ship wake on the larger scales. Our model results indicate that the natural stratification affects the distribution and retention of pollutants in the wake region. The depth of discharge and the wake turbulence characteristics will in turn affect the fate and transport of pollutants on larger spatiotemporal scales.</p>


Hydrobiologia ◽  
2004 ◽  
Vol 517 (1-3) ◽  
pp. 171-177
Author(s):  
Steven W. Effler ◽  
David M. O'Donnell ◽  
MaryGail Perkins ◽  
David G. Smith

2019 ◽  
Author(s):  
Huisheng Bian ◽  
Karl Froyd ◽  
Daniel M. Murphy ◽  
Jack Dibb ◽  
Mian Chin ◽  
...  

Abstract. Atmospheric sea salt plays important roles in marine cloud formation and atmospheric chemistry. We performed an integrated analysis of NASA GEOS model simulations run with the GOCART aerosol module, in situ measurements from the PALMS and SAGA instruments obtained during the NASA ATom campaign, and aerosol optical depth (AOD) measurements from AERONET Marine Aerosol Network (MAN) sun photometers and from MODIS satellite observations to better constrain sea salt in the marine atmosphere. ATom measurements and GEOS model simulation both show that sea salt concentrations over the Pacific and Atlantic oceans have a strong vertical gradient, varying up to four orders of magnitude from the marine boundary layer to free troposphere. The modeled residence times suggest that the lifetime of sea salt particles with dry diameter less than 3 μm is largely controlled by wet removal, followed next by turbulent process. During both boreal summer and winter, the GEOS simulated sea salt mass mixing ratios agree with SAGA measurements in the marine boundary layer (MBL) and with PALMS measurements above the MBL. However, comparison of AOD from GEOS with AERONET/MAN and MODIS aerosol retrievals indicated that the model underestimated AOD over the oceans where sea salt dominates. The apparent discrepancy of slightly overpredicted concentration and large underpredicted AOD could not be explained by biases in the model RH, which was found to be comparable to or larger than the in-situ measurements. This conundrum is at least partially explained by the sea salt size distribution; where the GEOS simulation has much less sea salt percentage-wise in the smaller particles than was observed by PALMS. Model sensitivity experiments indicated that the simulated sea salt is better correlated with measurements when the sea salt emission is calculated based on the friction velocity and with consideration of sea surface temperature dependence than that parameterized with the 10-m winds.


2020 ◽  
Author(s):  
Leqiang Sun ◽  
Stéphane Belair ◽  
Marco Carrera ◽  
Bernard Bilodeau

<p>Canadian Space Agency (CSA) has recently started receiving and processing the images from the recently launched C-band RADARSAT Constellation Mission (RCM). The backscatter and soil moisture retrievals products from the previously launched RADARSAT-2 agree well with both in-situ measurements and surface soil moisture modeled with land surface model Soil, Vegetation, and Snow (SVS). RCM will provide those products at an even better spatial coverage and temporal resolution. In preparation of the potential operational application of RCM products in Canadian Meteorological Center (CMC), this paper presents the scenarios of assimilating either soil moisture retrieval or outright backscatter signal in a 100-meter resolution version of the Canadian Land Data Assimilation System (CaLDAS) on field scale with time interval of three hours. The soil moisture retrieval map was synthesized by extrapolating the regression relationship between in-situ measurements and open loop model output based on soil texture lookup table. Based on this, the backscatter map was then generated with the surface roughness retrieved from RADARSAT-2 images using a modified Integral Equation Model (IEM) model. Bias correction was applied to the Ensemble Kalman filter (EnKF) to mitigate the impact of nonlinear errors introduced by multi-sourced perturbations. Initial results show that the assimilation of backscatter is as effective as assimilating soil moisture retrievals. Compared to open loop, both can improve the analysis of surface moisture, particularly in terms of reducing bias.  </p>


2020 ◽  
Author(s):  
Miguel Angel Izquierdo Perez ◽  
Christian Voigt ◽  
Elmas Sinem Ince ◽  
Frank Flechtner

<p>With the launch of the Gravity Recovery and Climate Experiment (GRACE) mission in 2002 and continued with GRACE Follow-on (GRACE-FO) since 2018, it is nowadays possible to monitor important mass variations in the Earth system. Nevertheless, validating these observations is a challenging task due to the lack of alternative methods to obtain directly comparable in-situ measurements. The most appropriate approach for this endeavor consists of comparing the GRACE derived Total Water Storage (TWS) residuals against Superconducting Gravimeter (SG) residuals, which provide long term stability.</p> <p>The in-situ data used for this project are the gravity residuals obtained after removing the effects of solid Earth tides and ocean tidal loading, atmospheric loading, instrumental drift, polar motion and length‐of‐day induced gravity changes, from nine SG stations between January 2010 and March 2017. Such residuals were then compared with GRACE retrieved TWS residuals obtained from the Gravity Information System (GravIS) portal (gravis.gfz-potsdam.de).</p> <p>In this project, three decomposition methods were used for the comparisons: Principal Component Analysis (PCA), Spatiotemporal Independent Component Analysis (stICA) and Multivariate Singular Spectral Analysis (MSSA). The main aim was to assess the impact of the GRACE data corrections applied by GravIS to the coefficient C20, the coefficients of degree/order one, and the Glacial Isostatic Adjustment (GIA) effect. Moreover, the Gaussian, DDK and VDK filtering techniques were evaluated as well.</p> <p>The tested methods proved to cope with the residual hydrological effects on SG measurements up to an extend that allows an objective evaluation of the data. The results obtained from this analysis indicate that the most optimal solution is achieved by correcting the C20 and degree/order 1 coefficients. The most effective filters are DDK1, VDK2 and Gaussian with a 500 km bandwidth, in that order. Furthermore, the GIA correction demonstrates to be relevant for northern locations like Onsala.</p> <p>Concerning the decomposition methods, MSSA demonstrates to be a powerful tool, synthesizing the most important common trends among the in-situ measurements of different stations, and displaying the local differences of the signals. The common signals extracted from PCA represent a good overview of the trends from the data but is not detailed at the individual locations. Finally, the stICA decomposition is not able to extract these common signals when the input data is significantly different across the individual variables for SG data. This is explained by the Blind Source Separation (BSS) nature of the methodology, which intends to identify differences among the signals, and is not useful in this case where the signals are affected by the local hydrology.</p> <p>The importance of this study lies in the versatility that the successfully tested methods show for the purpose of GRACE data comparison. Furthermore, the methodology applied in this project can be extended to analyze the current GRACE-FO mission as well other gravimetric satellite missions in the future.</p>


Sign in / Sign up

Export Citation Format

Share Document