scholarly journals Attribution of recent increases in atmospheric methane through 3-D inverse modelling

2018 ◽  
Author(s):  
Joe McNorton ◽  
Chris Wilson ◽  
Manuel Gloor ◽  
Rob Parker ◽  
Hartmut Boesch ◽  
...  

Abstract. The atmospheric methane (CH4) growth rate has varied considerably in recent decades. Unexplained renewed growth after 2006 followed seven years of stagnation and coincided with an isotopic trend toward CH4 more depleted in 13C, suggesting changes in sources and/or sinks. Using surface observations of both CH4 and the isotopologue ratio value (δ13CH4) to constrain a global 3D chemical transport model (CTM), we have performed a synthesis inversion for source and sink attribution. Our method extends on previous studies by providing monthly and regional attribution of emissions from 6 different sectors and changes in atmospheric sinks for the extended 2003–2015 period. Regional evaluation of the model CH4 tracer with independent column observations from the Greenhouse gases Observing SATellite (GOSAT) shows improved performance when using posterior fluxes (R = 0.94–0.96, RMSE = 8.3–16.5 ppb), relative to prior fluxes (R = 0.60–0.92, RMSE = 48.6–64.6 ppb). Further independent validation with data from the Total Carbon Column Observing Network (TCCON) shows a similar improvement in the posterior fluxes (R = 0.90, RMSE = 21.4 ppb) compared to the prior (R = 0.71, RMSE = 55.3 ppb). Based on these improved posterior fluxes, the inversion results suggest the most likely cause of the renewed methane growth is a post-2006 1.8 ± 0.4 % decrease in mean OH, a 12.9 ± 2.7 % increase in energy sector emissions, mainly from Africa/Middle East and Southern Asia/Oceania, and a 2.6 ± 1.8 % increase in wetland emissions, mainly from Northern Eurasia. The posterior wetland increases are in general agreement with bottom-up estimates, but the energy sector growth is greater than estimated by bottom-up methods. The model results are consistent across a range of sensitivity analyses performed. When forced to assume a constant (annually repeating) OH distribution, the inversion requires a greater increase in energy sector (13.6 ± 2.7 %) and wetland (3.6 ± 1.8 %) emissions but also introduces an 11.5 ± 3.8 % decrease in biomass burning emissions. Assuming no prior trend in sources and sinks slightly reduces the posterior growth rate in energy sector and wetland emissions and further increases the amplitude of the negative OH trend. We find that possible tropospheric Cl variations do not to influence δ13CH4 and CH4 trends, although we suggest further work on Cl variability is required to fully diagnose this contribution. While the study provides quantitative insight into possible emissions variations which may explain the observed trends, uncertainty in prior source and sink estimates and a paucity of δ13CH4 observations limit the accuracy of the posterior estimates.

2018 ◽  
Vol 18 (24) ◽  
pp. 18149-18168 ◽  
Author(s):  
Joe McNorton ◽  
Chris Wilson ◽  
Manuel Gloor ◽  
Rob J. Parker ◽  
Hartmut Boesch ◽  
...  

Abstract. The atmospheric methane (CH4) growth rate has varied considerably in recent decades. Unexplained renewed growth after 2006 followed 7 years of stagnation and coincided with an isotopic trend toward CH4 more depleted in 13C, suggesting changes in sources and/or sinks. Using surface observations of both CH4 and the relative change of isotopologue ratio (δ13CH4) to constrain a global 3-D chemical transport model (CTM), we have performed a synthesis inversion for source and sink attribution. Our method extends on previous studies by providing monthly and regional attribution of emissions from six different sectors and changes in atmospheric sinks for the extended 2003–2015 period. Regional evaluation of the model CH4 tracer with independent column observations from the Greenhouse Gases Observing Satellite (GOSAT) shows improved performance when using posterior fluxes (R=0.94–0.96, RMSE =8.3–16.5 ppb), relative to prior fluxes (R=0.60–0.92, RMSE =48.6–64.6 ppb). Further independent validation with data from the Total Carbon Column Observing Network (TCCON) shows a similar improvement in the posterior fluxes (R=0.87, RMSE =18.8 ppb) compared to the prior fluxes (R=0.69, RMSE =55.9 ppb). Based on these improved posterior fluxes, the inversion results suggest the most likely cause of the renewed methane growth is a post-2007 1.8±0.4 % decrease in mean OH, a 12.9±2.7 % increase in energy sector emissions, mainly from Africa–Middle East and southern Asia–Oceania, and a 2.6±1.8 % increase in wetland emissions, mainly from northern Eurasia. The posterior wetland flux increases are in general agreement with bottom-up estimates, but the energy sector growth is greater than estimated by bottom-up methods. The model results are consistent across a range of sensitivity analyses. When forced to assume a constant (annually repeating) OH distribution, the inversion requires a greater increase in energy sector (13.6±2.7 %) and wetland (3.6±1.8 %) emissions and an 11.5±3.8 % decrease in biomass burning emissions. Assuming no prior trend in sources and sinks slightly reduces the posterior growth rate in energy sector and wetland emissions and further increases the magnitude of the negative OH trend. We find that possible tropospheric Cl variations do not influence δ13CH4 and CH4 trends, although we suggest further work on Cl variability is required to fully diagnose this contribution. While the study provides quantitative insight into possible emissions variations which may explain the observed trends, uncertainty in prior source and sink estimates and a paucity of δ13CH4 observations limit the robustness of the posterior estimates.


2020 ◽  
Author(s):  
Angharad C. Stell ◽  
Luke M. Western ◽  
Matthew Rigby

Abstract. We present a method to efficiently approximate the response of atmospheric methane mole fraction and δ13C-CH4 to changes in uncertain emission and loss parameters in a three-dimensional global chemical transport model. Our approach, based on Gaussian process emulation, allows relationships between inputs and outputs in the model to be efficiently explored. The presented emulator successfully reproduces the chemical transport model output with a root-mean-square error of 1.2 ppb and 0.06 ‰ for hemispheric methane mole fraction and δ13C-CH4, respectively, for 28 uncertain model inputs. The method is shown to outperform multiple linear regression, because it captures non-linear relationships between inputs and outputs, as well as the interaction between model input parameters. The emulator was used to determine how sensitive methane mole fraction and δ13C-CH4 are to the major source and sink components of the atmospheric budget, given current estimates of their uncertainty. We find that our current knowledge of the methane budget, as inferred through hemispheric mole fraction observations, is limited primarily by uncertainty in the global mean hydroxyl radical concentration and emissions from fresh water. Our work quantitatively determines the added value of measurements of δ13C-CH4, which are sensitive to some uncertain parameters that mole fraction observations on their own are not. However, we demonstrate the critical importance of constraining isotopic initial conditions and isotopic source signatures, small uncertainties in which strongly influence long-term δ13C-CH4 trends, because of the long timescales over which transient perturbations propagate through the atmosphere. Our results also demonstrate that the magnitude and trend of methane mole fraction and δ13C-CH4 can be strongly influenced by the combined uncertainty of more minor components of the atmospheric budget, which are often fixed and assumed to be well-known in inverse modelling studies (e.g. emissions from termites, hydrates, and oceans). Overall, our work provides an overview of the sensitivity of atmospheric observations to budget uncertainties and outlines a method which could be employed to account for these uncertainties in future inverse modelling systems.


2016 ◽  
Vol 16 (12) ◽  
pp. 7943-7956 ◽  
Author(s):  
Joe McNorton ◽  
Martyn P. Chipperfield ◽  
Manuel Gloor ◽  
Chris Wilson ◽  
Wuhu Feng ◽  
...  

Abstract. The growth in atmospheric methane (CH4) concentrations over the past 2 decades has shown large variability on a timescale of several years. Prior to 1999 the globally averaged CH4 concentration was increasing at a rate of 6.0 ppb yr−1, but during a stagnation period from 1999 to 2006 this growth rate slowed to 0.6 ppb yr−1. From 2007 to 2009 the growth rate again increased to 4.9 ppb yr−1. These changes in growth rate are usually ascribed to variations in CH4 emissions. We have used a 3-D global chemical transport model, driven by meteorological reanalyses and variations in global mean hydroxyl (OH) concentrations derived from CH3CCl3 observations from two independent networks, to investigate these CH4 growth variations. The model shows that between 1999 and 2006 changes in the CH4 atmospheric loss contributed significantly to the suppression in global CH4 concentrations relative to the pre-1999 trend. The largest factor in this is relatively small variations in global mean OH on a timescale of a few years, with minor contributions of atmospheric transport of CH4 to its sink region and of atmospheric temperature. Although changes in emissions may be important during the stagnation period, these results imply a smaller variation is required to explain the observed CH4 trends. The contribution of OH variations to the renewed CH4 growth after 2007 cannot be determined with data currently available.


2021 ◽  
Vol 21 (3) ◽  
pp. 1717-1736
Author(s):  
Angharad C. Stell ◽  
Luke M. Western ◽  
Tomás Sherwen ◽  
Matthew Rigby

Abstract. We present a method to efficiently approximate the response of atmospheric-methane mole fraction and δ13C–CH4 to changes in uncertain emission and loss parameters in a three-dimensional global chemical transport model. Our approach, based on Gaussian process emulation, allows relationships between inputs and outputs in the model to be efficiently explored. The presented emulator successfully reproduces the chemical transport model output with a root-mean-square error of 1.0 ppb and 0.05 ‰ for hemispheric-methane mole fraction and δ13C–CH4, respectively, for 28 uncertain model inputs. The method is shown to outperform multiple linear regression because it captures non-linear relationships between inputs and outputs as well as the interaction between model input parameters. The emulator was used to determine how sensitive methane mole fraction and δ13C–CH4 are to the major source and sink components of the atmospheric budget given current estimates of their uncertainty. We find that our current knowledge of the methane budget, as inferred through hemispheric mole fraction observations, is limited primarily by uncertainty in the global mean hydroxyl radical concentration and freshwater emissions. Our work quantitatively determines the added value of measurements of δ13C–CH4, which are sensitive to some uncertain parameters to which mole fraction observations on their own are not. However, we demonstrate the critical importance of constraining isotopic initial conditions and isotopic source signatures, small uncertainties in which strongly influence long-term δ13C–CH4 trends because of the long timescales over which transient perturbations propagate through the atmosphere. Our results also demonstrate that the magnitude and trend of methane mole fraction and δ13C–CH4 can be strongly influenced by the combined uncertainty in more minor components of the atmospheric budget, which are often fixed and assumed to be well-known in inverse-modelling studies (e.g. emissions from termites, hydrates, and oceans). Overall, our work provides an overview of the sensitivity of atmospheric observations to budget uncertainties and outlines a method which could be employed to account for these uncertainties in future inverse-modelling systems.


2016 ◽  
Author(s):  
J. McNorton ◽  
M. P. Chipperfield ◽  
M. Gloor ◽  
C. Wilson ◽  
W. Feng ◽  
...  

Abstract. The growth in atmospheric methane (CH4) concentrations over the past two decades has shown large variability on a timescale of many years. Prior to 1999 the globally averaged CH4 concentration was increasing at a rate of 6.0 ppb/yr, but during a stagnation period from 1999 to 2006 this growth rate slowed to 0.6 ppb/yr. Since 2007 the growth rate has again increased to 4.9 ppb/yr. These changes in growth rate are usually ascribed to variations in CH4 emissions. We have used a 3-D global chemical transport model, driven by meteorological reanalyses and variations in global mean hydroxyl (OH) concentrations derived from CH3CCl3 observations from two independent networks, to investigate these CH4 growth variations. The model shows that between 1999 and 2006, changes in the CH4 atmospheric loss contributed significantly to the suppression in global CH4 concentrations relative to the pre-1999 trend. The largest factor in this is relatively small variations in global mean OH on a timescale of a few years, with minor contributions of atmospheric transport of CH4 to its sink region and atmospheric temperature. Although changes in emissions may be important during the stagnation period, these results imply a smaller variation is required to explain the observed CH4 trends. The contribution of OH variations to the renewed CH4 growth after 2007 cannot be determined with data currently available.


2020 ◽  
Author(s):  
Xiaohui Lin ◽  
Wen Zhang ◽  
Monica Crippa ◽  
Shushi Peng ◽  
Pengfei Han ◽  
...  

Abstract. Atmospheric methane (CH4) is a potent greenhouse gas that is strongly influenced by several human activities. China, as one of the major agricultural and energy production countries, e.g., rice cultivation, ruminant feeding and coal production, contributes considerably to the global anthropogenic CH4 emissions. Understanding the characteristics of China's CH4 emissions is necessary for interpreting source contributions and for further climate change mitigation. However, the scarcity of data from some sources or years and spatially explicit information pose great challenges to completing an analysis of CH4 emissions. This study provides a comprehensive evaluation of China's anthropogenic CH4 emissions by synthesizing most of the currently available data (12 inventories). The results show that anthropogenic CH4 emissions differ widely among inventories, with values ranging from 41.9–57.5 Tg CH4 yr−1 in 2010. The discrepancy primarily resulted from the energy sector (27.3–60.0 % of total emissions), followed by the agricultural (26.9–50.8 %), and waste treatment (8.1–21.2 %) sectors. Temporally, emissions among inventories stabilized in the 1990s, but increased significantly thereafter, with annual average growth rates (AAGRs) of 1.8–3.9 % during 2000–2010, but slower AAGRs of 0.5–2.2 % during 2011–2015. Spatially, the growth of CH4 emissions could be attributed mostly to an increase in emissions from the energy sector (mainly from coal mining) in the northern and central inland regions, followed by waste treatment in the southern and eastern regions. The availability of detailed activity data for sectors or subsectors and the use of region-specific emission factors play important roles in understanding source contributions, and reducing the uncertainty of bottom-up inventories.


2012 ◽  
Vol 12 (5) ◽  
pp. 12987-13014 ◽  
Author(s):  
D. J. Ivy ◽  
M. Rigby ◽  
M. Baasandorj ◽  
J. B. Burkholder ◽  
R. G. Prinn

Abstract. Global emission estimates based on new atmospheric observations are presented for the acylic high molecular weight perfluorocarbons (PFCs): decafluorobutane (C4F10), dodecafluoropentane (C5F12), tetradecafluorohexane (C6F14), hexadecafluoroheptane (C7F16) and octadecafluorooctane (C8F18). Emissions are estimated using a 3-dimensional chemical transport model and an inverse method that includes a growth constraint on emissions. The observations used in the inversion are based on newly measured archived air samples that cover a 39-yr period, from 1973 to 2011, and include 36 Northern Hemispheric and 46 Southern Hemispheric samples (Ivy et al., 2012). The derived emission estimates show that global emission rates were largest in the 1980s and 1990s for C4F10 and C5F12, and in the 1990s for C6F14,C7F16 and C8F18. After a subsequent decline, emissions have remained relatively stable, within 20%, for the last 5 yr. Bottom-up emission estimates are available from the Emission Database for Global Atmospheric Research version 4.2 (EDGARv4.2) for C4F10, C5F12, C6F14 and C7F16, and inventories of C4F10, C5F12 andC6F14 are reported to the United Nations' Framework Convention on Climate Change (UNFCCC) by Annex 1 countries that have ratified the Kyoto Protocol. The atmospheric measurement based emission estimates are 20 times larger than EDGARv4.2 for C4F10 and over three orders of magnitude for C5F12. The derived emission estimates for C6F14 largely agree with the bottom-up estimates from EDGARv4.2. Moreover, the C7F16 emission estimates are comparable to those of EDGARv4.2 at their peak in the 1990s, albeit significant underestimation for the other time periods. There are no bottom-up emission estimates for C8F18, thus the emission rates reported here are the first for C8F18. The reported inventories for C4F10, C5F12 and C6F14 to UNFCCC are five to ten times lower than those estimated in this study. In addition, we present measured infrared absorption spectra for C7F16 and C8F18, and estimate their radiative efficiencies and global warming potentials (GWPs). We find that C8F18's radiative efficiency is similar to trifluoromethyl sulfur pentafluoride's (SF5CF3) at 0.57 W m−2 ppb−1, which is the highest radiative efficiency of any measured atmospheric species. Using the 100-yr time horizon GWPs, the high molecular weight perfluorocarbons studied here contributed up to 15.4% of the total PFC emissions in CO2 equivalents in 1997 and 6% of the total PFC emissions in 2009.


2021 ◽  
Vol 13 (3) ◽  
pp. 1073-1088
Author(s):  
Xiaohui Lin ◽  
Wen Zhang ◽  
Monica Crippa ◽  
Shushi Peng ◽  
Pengfei Han ◽  
...  

Abstract. Atmospheric methane (CH4) is a potent greenhouse gas that is strongly influenced by several human activities. China, as one of the major agricultural and energy production countries, contributes considerably to the global anthropogenic CH4 emissions by rice cultivation, ruminant feeding, and coal production. Understanding the characteristics of China's CH4 emissions is necessary for interpreting source contributions and for further climate change mitigation. However, the scarcity of data from some sources or years and spatially explicit information pose great challenges to completing an analysis of CH4 emissions. This study provides a comprehensive comparison of China's anthropogenic CH4 emissions by synthesizing the most current and publicly available datasets (13 inventories). The results show that anthropogenic CH4 emissions differ widely among inventories, with values ranging from 44.4–57.5 Tg CH4 yr−1 in 2010. The discrepancy primarily resulted from the energy sector (27.3 %–60.0 % of total emissions), followed by the agricultural (26.9 %–50.8 %) and waste treatment (8.1 %–21.2 %) sectors. Temporally, emissions among inventories stabilized in the 1990s but increased significantly thereafter, with annual average growth rates (AAGRs) of 2.6 %–4.0 % during 2000–2010 but slower AAGRs of 0.5 %–2.2 % during 2011–2015, and the emissions became relatively stable, with AAGRs of 0.3 %–0.8 %, during 2015–2019 because of the stable emissions from the energy sector (mainly coal production). Spatially, there are large differences in emissions hotspot identification among inventories, and incomplete information on emission patterns may mislead or bias mitigation efforts for CH4 emission reductions. The availability of detailed activity data for sectors or subsectors and the use of region-specific emission factors play important roles in understanding source contributions and reducing the uncertainty in bottom-up inventories. Data used in this article are available at https://doi.org/10.6084/m9.figshare.12720989 (Lin et al., 2021).


2020 ◽  
Author(s):  
Alice Drinkwater ◽  
Tim Arnold ◽  
Paul Palmer

<p>Changes in atmospheric methane (CH<sub>4</sub>) are mainly driven by natural, anthropogenic and pyrogenic emissions and oxidation by OH.</p><p>There is no consensus about the underlying explanations about hemispheric-scale changes in atmospheric methane (CH<sub>4</sub>). This is partly due to sparse data that do not exclusively identify individual changes in surface emissions and surface and atmospheric losses of CH<sub>4</sub>. This challenge represents a major scientific weakness in our understanding of this potent greenhouse gas, with implications for meeting global climate policy obligations.  A confounding challenge is that the regional importance of individual emission sources change with time due to, for example, innovations in agricultural practices, climate-sensitive wetlands, and political decisions associated with climate friendlier transitional fuels.  </p><p><br>Here we use bulk isotope ratios δ<sup>13</sup>C and δD of CH<sub>4</sub> that have been previously shown to provide effective constraints on source apportionment: different CH<sub>4</sub> sources have characteristic isotope ratios. One of the key challenges associated with using these data is that region-specific isotope ratios change with time due to varying source prevalance, in addition to source signatures having inherent uncertainties. We use the GEOS-Chem global 3-D chemical transport model to describe the spatial and temporal isotopic behaviour of atmospheric CH<sub>4</sub>. We develop a Maximum A-Posteriori inverse method to simultaneously infer time dependent CH<sub>4</sub> emissions and isotope ratios from in situ data. </p><p>We will report the magnitude, distribution and source attribution of CH<sub>4</sub> emissions from 2004 to 2017, inferred from in situ measurements of total atmospheric CH<sub>4</sub> mole fraction and the corresponding measurements of δ<sup>13</sup>C and δD. We will compare our results with previous studies.</p>


Sign in / Sign up

Export Citation Format

Share Document