scholarly journals Interaction between Dicarboxylic Acid and Sulfuric Acid-Base Clusters Enhances New Particle Formation

Author(s):  
Yun Lin ◽  
Yuemeng Ji ◽  
Yixin Li ◽  
Jeremiah Secrest ◽  
Wen Xu ◽  
...  

Abstract. Dicarboxylic acids are believed to stabilize pre-nucleation clusters and facilitate new particle formation in the atmosphere, but the detailed mechanism leading to the formation of multi-component critical nucleus involving organic acids, sulfuric acid (SA), base species, and water remains unclear. In this study, theoretical caculations are performed to elucidate the interactions between succinic acid (SUA) and clusters consisting of SA-ammonia (AM)/dimethylamine (DMA) in the presence of hydration of up to six water molecules. Formation of the hydrated SUA·SA·base clusters by adding one SUA molecule to the SA·base hydrates is energetically favorable. The addition of SUA to the SA·base hydrates either triggers proton transfer from SA to the base molecule, resulting in formation of new covalent bonds, or strengthens the pre-existing covalent bonds. The presence of SUA promotes hydration of the SA·AM and SA·AM·DMA clusters but dehydration of the SA·DMA clusters. At equilibrium, the uptake of SUA competes with the uptake of the second SA molecule to stabilize the SA·base clusters at atmospherically relevant concentrations. The clusters containing both the base and organic acid are capable of further binding with acid molecules to promote their subsequent growth. Our results indicate that the multi-component nucleation involving organic acids, sulfuric acid, and base species promotes new particle formation in the atmosphere, particularly under polluted conditions.

2019 ◽  
Vol 19 (12) ◽  
pp. 8003-8019 ◽  
Author(s):  
Yun Lin ◽  
Yuemeng Ji ◽  
Yixin Li ◽  
Jeremiah Secrest ◽  
Wen Xu ◽  
...  

Abstract. Dicarboxylic acids likely participate in the formation of pre-nucleation clusters to facilitate new particle formation in the atmosphere, but the detailed mechanism leading to the formation of multicomponent critical nuclei involving organic acids, sulfuric acid (SA), base species, and water remains unclear. In this study, theoretical calculations are performed to elucidate the interactions between succinic acid (SUA) and clusters consisting of SA-ammonia (AM)∕dimethylamine (DMA) in the presence of hydration of up to six water molecules. Formation of the hydrated SUA⚫SA⚫ base clusters is energetically favorable, triggering proton transfer from SA to the base molecule to form new covalent bonds or strengthening the preexisting covalent bonds. The presence of SUA promotes hydration of the SA⚫AM and SA⚫AM⚫DMA clusters but dehydration of the SA⚫DMA clusters. At equilibrium, SUA competes with the second SA molecule for addition to the SA⚫ base clusters at atmospherically relevant concentrations. The clusters containing both the base and organic acid are capable of further binding with acid molecules to promote subsequent growth. Our results indicate that the multicomponent nucleation involving organic acids, sulfuric acid, and base species promotes new particle formation in the atmosphere, particularly under polluted conditions with a high concentration of diverse organic acids.


2016 ◽  
Author(s):  
Anna L. Hodshire ◽  
Michael J. Lawler ◽  
Jun Zhao ◽  
John Ortega ◽  
Coty Jen ◽  
...  

Abstract. New-particle formation (NPF) is a significant source of aerosol particles to the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters ~ 1 nm to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric acid vapor, condensation of organic vapors, uptake of organic acids through acid-base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas-and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by organics alone; (2) growth by sulfuric-acid/ammonia; and (3) growth by sulfuric-acid/amines/organics. To supplement the measurements, we used the particle-growth model MABNAG (Model for Acid-Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these three days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines); (2) near-irreversible condensation from non-reactive extremely-low-volatility organic compounds (ELVOCs); and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth pathways, while also predicting that ELVOCs contribute more to growth than organic salt formation. However, most MABNAG model simulations tend to underpredict the observed growth rates; this underprediction may come from neglecting the contributions to growth from semi-to-low-volatility species or accretion reactions. Our results suggest that in addition to sulfuric acid, ELVOCs are also very important for growth in this rural setting. We discuss the limitations of our study that arise from not accounting for semi- and low-volatility organics, as well as nitrogen-containing species beyond ammonia and amines in the model. Quantitatively understanding the overall budget, evolution, and thermodynamic properties of lower-volatility organics in the atmosphere will be essential for improving global aerosol models.


2014 ◽  
Vol 14 (9) ◽  
pp. 13413-13464 ◽  
Author(s):  
S. Schobesberger ◽  
A. Franchin ◽  
F. Bianchi ◽  
L. Rondo ◽  
J. Duplissy ◽  
...  

Abstract. The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3-H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from <2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3, and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3-H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O-H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4]<0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3-H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm / Δn), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δm / Δn saturated between 1 and 1.4 for [NH3] / [H2SO4]>10. Positively charged clusters grew on average by Δm / Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid-base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid-base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that yet unobservable electrically neutral NH3-H2SO4 clusters grow by generally the same mechanism as ionic clusters, particularly for [NH3] / [H2SO4]>10. We expect that NH3-H2SO4 clusters form and grow also mostly by Δm / Δn>1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3-H2SO4 anion clusters during new particle formation in the Finnish boreal forest. However, the exact role of NH3-H2SO4 clusters in boundary layer particle formation remains to be resolved.


2016 ◽  
Vol 16 (14) ◽  
pp. 9321-9348 ◽  
Author(s):  
Anna L. Hodshire ◽  
Michael J. Lawler ◽  
Jun Zhao ◽  
John Ortega ◽  
Coty Jen ◽  
...  

Abstract. New-particle formation (NPF) is a significant source of aerosol particles into the atmosphere. However, these particles are initially too small to have climatic importance and must grow, primarily through net uptake of low-volatility species, from diameters  ∼  1 to 30–100 nm in order to potentially impact climate. There are currently uncertainties in the physical and chemical processes associated with the growth of these freshly formed particles that lead to uncertainties in aerosol-climate modeling. Four main pathways for new-particle growth have been identified: condensation of sulfuric-acid vapor (and associated bases when available), condensation of organic vapors, uptake of organic acids through acid–base chemistry in the particle phase, and accretion of organic molecules in the particle phase to create a lower-volatility compound that then contributes to the aerosol mass. The relative importance of each pathway is uncertain and is the focus of this work. The 2013 New Particle Formation Study (NPFS) measurement campaign took place at the DOE Southern Great Plains (SGP) facility in Lamont, Oklahoma, during spring 2013. Measured gas- and particle-phase compositions during these new-particle growth events suggest three distinct growth pathways: (1) growth by primarily organics, (2) growth by primarily sulfuric acid and ammonia, and (3) growth by primarily sulfuric acid and associated bases and organics. To supplement the measurements, we used the particle growth model MABNAG (Model for Acid–Base chemistry in NAnoparticle Growth) to gain further insight into the growth processes on these 3 days at SGP. MABNAG simulates growth from (1) sulfuric-acid condensation (and subsequent salt formation with ammonia or amines), (2) near-irreversible condensation from nonreactive extremely low-volatility organic compounds (ELVOCs), and (3) organic-acid condensation and subsequent salt formation with ammonia or amines. MABNAG is able to corroborate the observed differing growth pathways, while also predicting that ELVOCs contribute more to growth than organic salt formation. However, most MABNAG model simulations tend to underpredict the observed growth rates between 10 and 20 nm in diameter; this underprediction may come from neglecting the contributions to growth from semi-to-low-volatility species or accretion reactions. Our results suggest that in addition to sulfuric acid, ELVOCs are also very important for growth in this rural setting. We discuss the limitations of our study that arise from not accounting for semi- and low-volatility organics, as well as nitrogen-containing species beyond ammonia and amines in the model. Quantitatively understanding the overall budget, evolution, and thermodynamic properties of lower-volatility organics in the atmosphere will be essential for improving global aerosol models.


2015 ◽  
Vol 15 (1) ◽  
pp. 55-78 ◽  
Author(s):  
S. Schobesberger ◽  
A. Franchin ◽  
F. Bianchi ◽  
L. Rondo ◽  
J. Duplissy ◽  
...  

Abstract. The formation of particles from precursor vapors is an important source of atmospheric aerosol. Research at the Cosmics Leaving OUtdoor Droplets (CLOUD) facility at CERN tries to elucidate which vapors are responsible for this new-particle formation, and how in detail it proceeds. Initial measurement campaigns at the CLOUD stainless-steel aerosol chamber focused on investigating particle formation from ammonia (NH3) and sulfuric acid (H2SO4). Experiments were conducted in the presence of water, ozone and sulfur dioxide. Contaminant trace gases were suppressed at the technological limit. For this study, we mapped out the compositions of small NH3–H2SO4 clusters over a wide range of atmospherically relevant environmental conditions. We covered [NH3] in the range from < 2 to 1400 pptv, [H2SO4] from 3.3 × 106 to 1.4 × 109 cm−3 (0.1 to 56 pptv), and a temperature range from −25 to +20 °C. Negatively and positively charged clusters were directly measured by an atmospheric pressure interface time-of-flight (APi-TOF) mass spectrometer, as they initially formed from gas-phase NH3 and H2SO4, and then grew to larger clusters containing more than 50 molecules of NH3 and H2SO4, corresponding to mobility-equivalent diameters greater than 2 nm. Water molecules evaporate from these clusters during sampling and are not observed. We found that the composition of the NH3–H2SO4 clusters is primarily determined by the ratio of gas-phase concentrations [NH3] / [H2SO4], as well as by temperature. Pure binary H2O–H2SO4 clusters (observed as clusters of only H2SO4) only form at [NH3] / [H2SO4] < 0.1 to 1. For larger values of [NH3] / [H2SO4], the composition of NH3–H2SO4 clusters was characterized by the number of NH3 molecules m added for each added H2SO4 molecule n (Δm/Δ n), where n is in the range 4–18 (negatively charged clusters) or 1–17 (positively charged clusters). For negatively charged clusters, Δ m/Δn saturated between 1 and 1.4 for [NH3] / [H2SO4] > 10. Positively charged clusters grew on average by Δm/Δn = 1.05 and were only observed at sufficiently high [NH3] / [H2SO4]. The H2SO4 molecules of these clusters are partially neutralized by NH3, in close resemblance to the acid–base bindings of ammonium bisulfate. Supported by model simulations, we substantiate previous evidence for acid–base reactions being the essential mechanism behind the formation of these clusters under atmospheric conditions and up to sizes of at least 2 nm. Our results also suggest that electrically neutral NH3–H2SO4 clusters, unobservable in this study, have generally the same composition as ionic clusters for [NH3] / [H2SO4] > 10. We expect that NH3–H2SO4 clusters form and grow also mostly by Δm/Δn > 1 in the atmosphere's boundary layer, as [NH3] / [H2SO4] is mostly larger than 10. We compared our results from CLOUD with APi-TOF measurements of NH3–H2SO4 anion clusters during new-particle formation in the Finnish boreal forest. However, the exact role of NH3–H2SO4 clusters in boundary layer particle formation remains to be resolved.


2021 ◽  
Author(s):  
James Brean ◽  
Manuel Dall’Osto ◽  
Rafel Simó ◽  
Zongbo Shi ◽  
David C. S. Beddows ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document