scholarly journals Open ocean and coastal new particle formation from sulfuric acid and amines around the Antarctic Peninsula

2021 ◽  
Author(s):  
James Brean ◽  
Manuel Dall’Osto ◽  
Rafel Simó ◽  
Zongbo Shi ◽  
David C. S. Beddows ◽  
...  
2019 ◽  
Vol 19 (11) ◽  
pp. 7583-7594 ◽  
Author(s):  
Jaeseok Kim ◽  
Young Jun Yoon ◽  
Yeontae Gim ◽  
Jin Hee Choi ◽  
Hyo Jin Kang ◽  
...  

Abstract. The physical characteristics of aerosol particles during particle bursts observed at King Sejong Station in the Antarctic Peninsula from March 2009 to December 2016 were analyzed. This study focuses on the seasonal variation in parameters related to particle formation such as the occurrence, formation rate (FR) and growth rate (GR), condensation sink (CS) and source rate of condensable vapor. The number concentrations during new particle formation (NPF) events varied from 1707 to 83 120 cm−3, with an average of 20 649 ± 9290 cm−3, and the duration of the NPF events ranged from 0.6 to 14.4 h, with a mean of 4.6±1.5 h. The NPF event dominantly occurred during austral summer period (∼72 %). The measured mean values of FR and GR of the aerosol particles were 2.79±1.05 cm−3 s−1 and 0.68±0.27 nm h−1, respectively, showing enhanced rates in the summer season. The mean value of FR at King Sejong Station was higher than that at other sites in Antarctica, at 0.002–0.3 cm−3 s−1, while those of growth rates were relatively similar to the results observed by previous studies, at 0.4–4.3 nm h−1. The derived average values of CS and source rate of condensable vapor were (6.04±2.74)×10-3 s−1 and (5.19±3.51)×104 cm−3 s−1, respectively. The contribution of particle formation to cloud condensation nuclei (CCN) concentration was also investigated. The CCN concentration during the NPF period increased by approximately 11 % compared with the background concentration. In addition, the effects of the origin and pathway of air masses on the characteristics of aerosol particles during a NPF event were determined. The FRs were similar regardless of the origin and pathway, whereas the GRs of particles originating from the Antarctic Peninsula and the Bellingshausen Sea, at 0.77±0.25 and 0.76±0.30 nm h−1, respectively, were higher than those of particles originating from the Weddell Sea (0.41±0.15 nm h−1).


2018 ◽  
Vol 18 (16) ◽  
pp. 11779-11791 ◽  
Author(s):  
Ximeng Qi ◽  
Aijun Ding ◽  
Pontus Roldin ◽  
Zhengning Xu ◽  
Putian Zhou ◽  
...  

Abstract. Highly oxygenated multifunctional compounds (HOMs) play a key role in new particle formation (NPF), but their quantitative roles in different environments of the globe have not been well studied yet. Frequent NPF events were observed at two “flagship” stations under different environmental conditions, i.e. a remote boreal forest site (SMEAR II) in Finland and a suburban site (SORPES) in polluted eastern China. The averaged formation rate of 6 nm particles and the growth rate of 6–30 nm particles were 0.3 cm−3 s−1 and 4.5 nm h−1 at SMEAR II compared to 2.3 cm−3 s−1 and 8.7 nm h−1 at SORPES, respectively. To explore the differences of NPF at the two stations, the HOM concentrations and NPF events at two sites were simulated with the MALTE-BOX model, and their roles in NPF and particle growth in the two distinctly different environments are discussed. The model provides an acceptable agreement between the simulated and measured concentrations of sulfuric acid and HOMs at SMEAR II. The sulfuric acid and HOM organonitrate concentrations are significantly higher but other HOM monomers and dimers from monoterpene oxidation are lower at SORPES compared to SMEAR II. The model simulates the NPF events at SMEAR II with a good agreement but underestimates the growth of new particles at SORPES, indicating a dominant role of anthropogenic processes in the polluted environment. HOMs from monoterpene oxidation dominate the growth of ultrafine particles at SMEAR II while sulfuric acid and HOMs from aromatics oxidation play a more important role in particle growth. This study highlights the distinct roles of sulfuric acid and HOMs in NPF and particle growth in different environmental conditions and suggests the need for molecular-scale measurements in improving the understanding of NPF mechanisms in polluted areas like eastern China.


2007 ◽  
Vol 7 (1) ◽  
pp. 211-222 ◽  
Author(s):  
M. Ehn ◽  
T. Petäjä ◽  
H. Aufmhoff ◽  
P. Aalto ◽  
K. Hämeri ◽  
...  

Abstract. The hygroscopic growth of aerosol particles present in a boreal forest was measured at a relative humidity of 88%. Simultaneously the gas phase concentration of sulfuric acid, a very hygroscopic compound, was monitored. The focus was mainly on days with new particle formation by nucleation. The measured hygroscopic growth factors (GF) correlated positively with the gaseous phase sulfuric acid concentrations. The smaller the particles, the stronger the correlation, with r=0.20 for 50 nm and r=0.50 for 10 nm particles. The increase in GF due to condensing sulfuric acid is expected to be larger for particles with initially smaller masses. During new particle formation, the changes in solubility of the new particles were calculated during their growth to Aitken mode sizes. As the modal diameter increased, the solubility of the particles decreased. This indicated that the initial particle growth was due to more hygroscopic compounds, whereas the later growth during the evening and night was mainly caused by less hygroscopic or even hydrophobic compounds. For all the measured sizes, a diurnal variation in GF was observed both during days with and without particle formation. The GF was lowest at around midnight, with a mean value of 1.12–1.24 depending on particle size and if new particle formation occurred during the day, and increased to 1.25–1.34 around noon. This can be tentatively explained by day- and nighttime gas-phase chemistry; different vapors will be present depending on the time of day, and through condensation these compounds will alter the hygroscopic properties of the particles in different ways.


2018 ◽  
Vol 18 (3) ◽  
pp. 1835-1861 ◽  
Author(s):  
Johannes Größ ◽  
Amar Hamed ◽  
André Sonntag ◽  
Gerald Spindler ◽  
Hanna Elina Manninen ◽  
...  

Abstract. This paper revisits the atmospheric new particle formation (NPF) process in the polluted Central European troposphere, focusing on the connection with gas-phase precursors and meteorological parameters. Observations were made at the research station Melpitz (former East Germany) between 2008 and 2011 involving a neutral cluster and air ion spectrometer (NAIS). Particle formation events were classified by a new automated method based on the convolution integral of particle number concentration in the diameter interval 2–20 nm. To study the relevance of gaseous sulfuric acid as a precursor for nucleation, a proxy was derived on the basis of direct measurements during a 1-month campaign in May 2008. As a major result, the number concentration of freshly produced particles correlated significantly with the concentration of sulfur dioxide as the main precursor of sulfuric acid. The condensation sink, a factor potentially inhibiting NPF events, played a subordinate role only. The same held for experimentally determined ammonia concentrations. The analysis of meteorological parameters confirmed the absolute need for solar radiation to induce NPF events and demonstrated the presence of significant turbulence during those events. Due to its tight correlation with solar radiation, however, an independent effect of turbulence for NPF could not be established. Based on the diurnal evolution of aerosol, gas-phase, and meteorological parameters near the ground, we further conclude that the particle formation process is likely to start in elevated parts of the boundary layer rather than near ground level.


2021 ◽  
Vol 48 (7) ◽  
Author(s):  
Chao Yan ◽  
Rujing Yin ◽  
Yiqun Lu ◽  
Lubna Dada ◽  
Dongsen Yang ◽  
...  

2017 ◽  
Vol 51 (15) ◽  
pp. 8422-8431 ◽  
Author(s):  
Hong-Bin Xie ◽  
Jonas Elm ◽  
Roope Halonen ◽  
Nanna Myllys ◽  
Theo Kurtén ◽  
...  

2018 ◽  
Vol 18 (2) ◽  
pp. 845-863 ◽  
Author(s):  
Andreas Kürten ◽  
Chenxi Li ◽  
Federico Bianchi ◽  
Joachim Curtius ◽  
António Dias ◽  
...  

Abstract. A recent CLOUD (Cosmics Leaving OUtdoor Droplets) chamber study showed that sulfuric acid and dimethylamine produce new aerosols very efficiently and yield particle formation rates that are compatible with boundary layer observations. These previously published new particle formation (NPF) rates are reanalyzed in the present study with an advanced method. The results show that the NPF rates at 1.7 nm are more than a factor of 10 faster than previously published due to earlier approximations in correcting particle measurements made at a larger detection threshold. The revised NPF rates agree almost perfectly with calculated rates from a kinetic aerosol model at different sizes (1.7 and 4.3 nm mobility diameter). In addition, modeled and measured size distributions show good agreement over a wide range of sizes (up to ca. 30 nm). Furthermore, the aerosol model is modified such that evaporation rates for some clusters can be taken into account; these evaporation rates were previously published from a flow tube study. Using this model, the findings from the present study and the flow tube experiment can be brought into good agreement for the high base-to-acid ratios (∼ 100) relevant for this study. This confirms that nucleation proceeds at rates that are compatible with collision-controlled (a.k.a. kinetically controlled) NPF for the conditions during the CLOUD7 experiment (278 K, 38 % relative humidity, sulfuric acid concentration between 1 × 106 and 3 × 107 cm−3, and dimethylamine mixing ratio of ∼ 40 pptv, i.e., 1 × 109 cm−3).


2014 ◽  
Vol 14 (8) ◽  
pp. 3865-3881 ◽  
Author(s):  
M. I. García ◽  
S. Rodríguez ◽  
Y. González ◽  
R. D. García

Abstract. A climatology of new particle formation (NPF) events at high altitude in the subtropical North Atlantic is presented. A 4-year data set (June 2008–June 2012), which includes number size distributions (10–600 nm), reactive gases (SO2, NOx, and O3), several components of solar radiation and meteorological parameters, measured at Izaña Global Atmosphere Watch (GAW) observatory (2373 m above sea level; Tenerife, Canary Islands) was analysed. NPF is associated with the transport of gaseous precursors from the boundary layer by orographic buoyant upward flows that perturb the low free troposphere during daytime. On average, 30% of the days contained an NPF event. Mean values of the formation and growth rates during the study period were 0.46 cm−3 s−1 and 0.42 nm h−1, correspondingly. There is a clearly marked NPF season (May–August), when these events account for 50–60% of the days per month. Monthly mean values of the formation and growth rates exhibit higher values in this season, 0.49–0.92 cm−3 s−1 and 0.48–0.58 nm h−1, respectively. During NPF events, SO2, UV radiation and upslope winds showed higher values than during non-events. The overall data set indicates that SO2 plays a key role as precursor, although other species seem to contribute during some periods. Condensation of sulfuric acid vapour accounts for most of the measured particle growth during most of the year (~70%), except for some periods. In May, the highest mean growth rates (~0.6 nm h−1) and the lowest contribution of sulfuric acid (~13%) were measured, suggesting a significant involvement of other condensing vapours. The SO2 availability seems also to be the most influencing parameter in the year-to-year variability in the frequency of NPF events. The condensation sink showed similar features to other mountain sites, showing high values during NPF events. Summertime observations, when Izaña is within the Saharan Air Layer, suggest that dust particles may play a significant role acting as coagulation sink of freshly formed nucleation particles. The contribution of dust particles to the condensation sink of sulfuric acid vapours seems to be modest (~8% as average). Finally, we identified a set of NPF events in which two nucleation modes, which may evolve at different rates, occur simultaneously and for which further investigations are necessary.


2017 ◽  
Author(s):  
Runlong Cai ◽  
Dongsen Yang ◽  
Yueyun Fu ◽  
Xing Wang ◽  
Xiaoxiao Li ◽  
...  

Abstract. The predominating role of aerosol Fuchs surface area, AFuchs, in determining the occurrence of new particle formation (NPF) events in Beijing was elucidated in this study. Analysis was based on a field campaign from March 12th to April 6th, 2016, in Beijing, during which aerosol size distributions down to ~ 1 nm and sulfuric acid concentration were simultaneously monitored. The 26 days were classified into 11 typical NPF days, 2 undefined days, and 13 non-event days. A dimensionless factor, LΓ, characterizing the relative ratio of the coagulation scavenging rate over the condensational growth rate and predicting whether or not a NPF event would occur (Kuang et al., 2010), was applied. The three parameters determining LΓ are sulfuric acid concentration, the growth enhancement factor characterizing contribution of other gaseous precursors to particle growth, Γ, and AFuchs. Different from other atmospheric environment such as in Boulder and Hyytiälä, the variations of daily maximum sulfuric acid concentration and Γ in Beijing are in a narrow range with geometric standard deviations of 1.40 and 1.31, respectively. Positive correlation was found between estimated new particle formation rate, J1.5, and sulfuric acid concentration with a mean fitted exponent of 2.4. However, sulfuric acid concentration on NPF days is not significantly higher than that on non-event days. Instead, AFuchs varies greatly among days in Beijing with a geometric standard deviation of 2.56, while it is relatively stable at other locations such as Tecamac, Atlanta, and Boulder. Good correlation was found between AFuchs and LΓ in Beijing (R2 = 0.88). It appears that the abundance of gaseous precursors such as sulfuric acid in Beijing is high enough to have nucleation, however, it is AFuchs that determines the occurrence of NPF event in Beijing. 10 in 11 NPF events occurred when AFuchs is smaller than 200 μm2/cm3, and the NPF event was suppressed due to coagulation scavenging when AFuchs is larger than 200 μm2/cm3. Measured AFuchs is in good correlation with PM2.5 mass concentration (R2 = 0.85) since AFuchs in Beijing is mainly determined by particles in the size range of 50–500 nm that also contribute to PM2.5 mass concentration.


2019 ◽  
Vol 19 (11) ◽  
pp. 7595-7608 ◽  
Author(s):  
Eunho Jang ◽  
Ki-Tae Park ◽  
Young Jun Yoon ◽  
Tae-Wook Kim ◽  
Sang-Bum Hong ◽  
...  

Abstract. Marine biota is an important source of atmospheric aerosol particles in the remote marine atmosphere. However, the relationship between new particle formation and marine biota is poorly quantified. Long-term observations (from 2009 to 2016) of the physical properties of atmospheric aerosol particles measured at the Antarctic Peninsula (King Sejong Station; 62.2∘ S, 58.8∘ W) and satellite-derived estimates of the biological characteristics were analyzed to identify the link between new particle formation and marine biota. New particle formation events in the Antarctic atmosphere showed distinct seasonal variations, with the highest values occurring when the air mass originated from the ocean domain during the productive austral summer (December, January and February). Interestingly, new particle formation events were more frequent in the air masses that originated from the Bellingshausen Sea than in those that originated from the Weddell Sea. The monthly mean number concentration of nanoparticles (2.5–10 nm in diameter) was >2-fold higher when the air masses passed over the Bellingshausen Sea than the Weddell Sea, whereas the biomass of phytoplankton in the Weddell Sea was more than ∼70 % higher than that of the Bellingshausen Sea during the austral summer period. Dimethyl sulfide (DMS) is of marine origin and its oxidative products are known to be one of the major components in the formation of new particles. Both satellite-derived estimates of the biological characteristics (dimethylsulfoniopropionate, DMSP; precursor of DMS) and phytoplankton taxonomic composition and in situ methanesulfonic acid (84 daily measurements during the summer period in 2013 and 2014) analysis revealed that DMS(P)-rich phytoplankton were more dominant in the Bellingshausen Sea than in the Weddell Sea. Furthermore, the number concentration of nanoparticles was positively correlated with the biomass of phytoplankton during the period when DMS(P)-rich phytoplankton predominate. These results indicate that oceanic DMS emissions could play a key role in the formation of new particles; moreover, the taxonomic composition of phytoplankton could affect the formation of new particles in the Antarctic Ocean.


Sign in / Sign up

Export Citation Format

Share Document