scholarly journals Effect of changing NO<sub><i>x</i></sub> lifetime on the seasonality and long-term trends of satellite-observed tropospheric NO<sub>2</sub> columns over China

Author(s):  
Viral Shah ◽  
Daniel J. Jacob ◽  
Ke Li ◽  
Rachel F. Silvern ◽  
Shixian Zhai ◽  
...  

Abstract. Satellite observations of tropospheric NO2 columns are extensively used to infer trends in anthropogenic emissions of nitrogen oxides (NOx ≡ NO + NO2), but this may be complicated by trends in NOx lifetime. Here we use 2004–2018 observations from the OMI satellite-based instrument (QA4ECV and POMINO v2 retrievals) to examine the seasonality and trends of tropospheric NO2 columns over central-eastern China, and we interpret the results with the GEOS-Chem chemical transport model. The observations show a factor of 3 increase in NO2 columns from summer to winter, which we explain in GEOS-Chem as reflecting a longer NOx lifetime in winter than in summer (21 h versus 5.9 h in 2017). The 2005–2018 summer trends of OMI NO2 closely follow the trends in the Multi-resolution Emission Inventory for China (MEIC), with a rise over the 2005–2011 period and a 25 % decrease since. We find in GEOS-Chem no significant trend of the NOx lifetime in summer, supporting the emission trend reported by MEIC. The winter trend of OMI NO2 is steeper than in summer over the entire period, which we attribute to a decrease in NOx lifetime at lower NOx emissions. Half of the NOx sink in winter is from N2O5 hydrolysis, which counterintuitively becomes more efficient as NOx emissions decrease due to less titration of ozone at night. Formation of organic nitrates also becomes an increasing sink of NOx as NOx emissions decrease but emissions of volatile organic compounds (VOCs) do not.

2020 ◽  
Vol 20 (3) ◽  
pp. 1483-1495 ◽  
Author(s):  
Viral Shah ◽  
Daniel J. Jacob ◽  
Ke Li ◽  
Rachel F. Silvern ◽  
Shixian Zhai ◽  
...  

Abstract. Satellite observations of tropospheric NO2 columns are extensively used to infer trends in anthropogenic emissions of nitrogen oxides (NOx≡NO+NO2), but this may be complicated by trends in NOx lifetime. Here we use 2004–2018 observations from the Ozone Monitoring Instrument (OMI) satellite-based instrument (QA4ECV and POMINO v2 retrievals) to examine the seasonality and trends of tropospheric NO2 columns over central–eastern China, and we interpret the results with the GEOS-Chem chemical transport model. The observations show a factor of 3 increase in NO2 columns from summer to winter, which we explain in GEOS-Chem as reflecting a longer NOx lifetime in winter than in summer (21 h versus 5.9 h in 2017). The 2005–2018 summer trends of OMI NO2 closely follow the trends in the Multi-resolution Emission Inventory for China (MEIC), with a rise over the 2005–2011 period and a 25 % decrease since. We find in GEOS-Chem no significant trend of the NOx lifetime in summer, supporting the emission trend reported by the MEIC. The winter trend of OMI NO2 is steeper than in summer over the entire period, which we attribute to a decrease in NOx lifetime at lower NOx emissions. Half of the NOx sink in winter is from N2O5 hydrolysis, which counterintuitively becomes more efficient as NOx emissions decrease due to less titration of ozone at night. The formation of organic nitrates also becomes an increasing sink of NOx as NOx emissions decrease but emissions of volatile organic compounds (VOCs) do not.


2011 ◽  
Vol 11 (12) ◽  
pp. 31523-31583 ◽  
Author(s):  
K. Miyazaki ◽  
H. J. Eskes ◽  
K. Sudo

Abstract. A data assimilation system has been developed to estimate global nitrogen oxides (NOx) emissions using OMI tropospheric NO2 columns (DOMINO product) and a global chemical transport model (CTM), CHASER. The data assimilation system, based on an ensemble Kalman filter approach, was applied to optimize daily NOx emissions with a horizontal resolution of 2.8° during the years 2005 and 2006. The background error covariance estimated from the ensemble CTM forecasts explicitly represents non-direct relationships between the emissions and tropospheric columns caused by atmospheric transport and chemical processes. In comparison to the a priori emissions based on bottom-up inventories, the optimized emissions were higher over Eastern China, the Eastern United States, Southern Africa, and Central-Western Europe, suggesting that the anthropogenic emissions are mostly underestimated in the inventories. In addition, the seasonality of the estimated emissions differed from that of the a priori emission over several biomass burning regions, with a large increase over Southeast Asia in April and over South America in October. The data assimilation results were validated against independent data: SCIAMACHY tropospheric NO2 columns and vertical NO2 profiles obtained from aircraft and lidar measurements. The emission correction greatly improved the agreement between the simulated and observed NO2 fields; this implies that the data assimilation system efficiently derives NOx emissions from concentration observations. We also demonstrated that biases in the satellite retrieval and model settings used in the data assimilation largely affect the magnitude of estimated emissions. These dependences should be carefully considered for better understanding NOx sources from top-down approaches.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2893 ◽  
Author(s):  
Willem W. Verstraeten ◽  
Klaas Folkert Boersma ◽  
John Douros ◽  
Jason E. Williams ◽  
Henk Eskes ◽  
...  

Top-down estimates of surface NOX emissions were derived for 23 European cities based on the downwind plume decay of tropospheric nitrogen dioxide (NO2) columns from the LOTOS-EUROS (Long Term Ozone Simulation-European Ozone Simulation) chemistry transport model (CTM) and from Ozone Monitoring Instrument (OMI) satellite retrievals, averaged for the summertime period (April–September) during 2013. Here we show that the top-down NOX emissions derived from LOTOS-EUROS for European urban areas agree well with the bottom-up NOX emissions from the MACC-III inventory data (R2 = 0.88) driving the CTM demonstrating the potential of this method. OMI top-down NOX emissions over the 23 European cities are generally lower compared with the MACC-III emissions and their correlation is slightly lower (R2 = 0.79). The uncertainty on the derived NO2 lifetimes and NOX emissions are on average ~55% for OMI and ~63% for LOTOS-EUROS data. The downwind NO2 plume method applied on both LOTOS-EUROS and OMI tropospheric NO2 columns allows to estimate NOX emissions from urban areas, demonstrating that this is a useful method for real-time updates of urban NOX emissions with reasonable accuracy.


2018 ◽  
Author(s):  
Arlene M. Fiore ◽  
Emily V. Fischer ◽  
Shubha Pandey Deolal ◽  
Oliver Wild ◽  
Dan Jaffe ◽  
...  

Abstract. Peroxy acetyl nitrate (PAN) is the most important reservoir species for nitrogen oxides (NOx) in the remote troposphere. Upon decomposition in remote regions, PAN promotes efficient ozone production. We evaluate monthly mean PAN abundances from global chemical transport model simulations (HTAP1) for 2001 with measurements from five northern mid-latitude mountain sites (four European and one North American). The multi-model mean generally captures the observed monthly mean PAN but individual models simulate a factor of ~ 4–8 range in monthly abundances. We quantify PAN source-receptor relationships at the measurement sites with sensitivity simulations that decrease regional anthropogenic emissions of PAN (and ozone) precursors by 20 % from North America (NA), Europe (EU), and East Asia (EA). The HTAP1 models attribute more of the observed PAN at Jungfraujoch (Switzerland) to emissions in NA and EA, and less to EU, than a prior trajectory-based estimate. The trajectory-based and modeling approaches agree that EU emissions play a role in the observed springtime PAN maximum at Jungfraujoch. The signal from anthropogenic emissions on PAN is strongest at Jungfraujoch and Mount Bachelor (Oregon, U.S.A.) during April. In this month, PAN source-receptor relationships correlate both with model differences in regional anthropogenic volatile organic compound (AVOC) emissions and with ozone source-receptor relationships. PAN observations at mountaintop sites can thus provide key information for evaluating models, including links between PAN and ozone production and source-receptor relationships. Establishing routine, long-term, mountaintop measurements is essential given the large observed interannual variability in PAN.


2016 ◽  
Vol 16 (9) ◽  
pp. 5969-5991 ◽  
Author(s):  
Jenny A. Fisher ◽  
Daniel J. Jacob ◽  
Katherine R. Travis ◽  
Patrick S. Kim ◽  
Eloise A. Marais ◽  
...  

Abstract. Formation of organic nitrates (RONO2) during oxidation of biogenic volatile organic compounds (BVOCs: isoprene, monoterpenes) is a significant loss pathway for atmospheric nitrogen oxide radicals (NOx), but the chemistry of RONO2 formation and degradation remains uncertain. Here we implement a new BVOC oxidation mechanism (including updated isoprene chemistry, new monoterpene chemistry, and particle uptake of RONO2) in the GEOS-Chem global chemical transport model with  ∼  25  ×  25 km2 resolution over North America. We evaluate the model using aircraft (SEAC4RS) and ground-based (SOAS) observations of NOx, BVOCs, and RONO2 from the Southeast US in summer 2013. The updated simulation successfully reproduces the concentrations of individual gas- and particle-phase RONO2 species measured during the campaigns. Gas-phase isoprene nitrates account for 25–50 % of observed RONO2 in surface air, and we find that another 10 % is contributed by gas-phase monoterpene nitrates. Observations in the free troposphere show an important contribution from long-lived nitrates derived from anthropogenic VOCs. During both campaigns, at least 10 % of observed boundary layer RONO2 were in the particle phase. We find that aerosol uptake followed by hydrolysis to HNO3 accounts for 60 % of simulated gas-phase RONO2 loss in the boundary layer. Other losses are 20 % by photolysis to recycle NOx and 15 % by dry deposition. RONO2 production accounts for 20 % of the net regional NOx sink in the Southeast US in summer, limited by the spatial segregation between BVOC and NOx emissions. This segregation implies that RONO2 production will remain a minor sink for NOx in the Southeast US in the future even as NOx emissions continue to decline.


2011 ◽  
Vol 11 (7) ◽  
pp. 3511-3525 ◽  
Author(s):  
Y. Wang ◽  
Y. Zhang ◽  
J. Hao ◽  
M. Luo

Abstract. Both observations and a 3-D chemical transport model suggest that surface ozone over populated eastern China features a summertime trough and that the month when surface ozone peaks differs by latitude and region. Source-receptor analysis is used to quantify the contributions of background ozone and Chinese anthropogenic emissions on this variability. Annual mean background ozone over China shows a spatial gradient from 55 ppbv in the northwest to 20 ppbv in the southeast, corresponding with changes in topography and ozone lifetime. Pollution background ozone (annual mean of 12.6 ppbv) shows a minimum in the summer and maximum in the spring. On the monthly-mean basis, Chinese pollution ozone (CPO) has a peak of 20–25 ppbv in June north of the Yangtze River and in October south of it, which explains the peaks of surface ozone in these months. The summertime trough in surface ozone over eastern China can be explained by the decrease of background ozone from spring to summer (by −15 ppbv regionally averaged over eastern China). Tagged simulations suggest that long-range transport of ozone from northern mid-latitude continents (including Europe and North America) reaches a minimum in the summer, whereas ozone from Southeast Asia exhibits a maximum in the summer over eastern China. This contrast in seasonality provides clear evidence that the seasonal switch in monsoonal wind patterns plays a significant role in determining the seasonality of background ozone over China.


2010 ◽  
Vol 10 (11) ◽  
pp. 27853-27891 ◽  
Author(s):  
Y. Wang ◽  
Y. Zhang ◽  
J. Hao ◽  
M. Luo

Abstract. Both observations and a 3-D chemical transport model suggest that surface ozone over populated eastern China features a significant drop in mid-summer and that the peak month differs by latitude and region. Source-receptor analysis is used to quantify the contributions of background ozone and Chinese anthropogenic emissions on this variability. Annual mean background ozone over China shows a spatial gradient from 55 ppbv in the northwest to 20 ppbv in the southeast, corresponding with changes in topography and ozone lifetime. Anthropogenic background (annual mean of 12.6 ppbv) shows distinct troughs in the summer and peaks in the spring. On the monthly-mean basis, Chinese pollution ozone (CPO) has a peak of 20–25 ppbv in June north of the Yangtze River and in October south of it, which explains the peaks of surface ozone in these months. The mid-summer drop in ozone over eastern China is driven by the decrease of background ozone (−15 ppbv). Tagged simulations suggest that this decrease is driven by reduced transport from Europe and North America, whereas ozone from Southeast Asia and Pacific Ocean exhibits a maximum in the summer over eastern China. This contrast in seasonality provides clear evidence that the seasonal switch in monsoonal wind patterns plays a significant role in determining the seasonality of background ozone over China.


2021 ◽  
Vol 21 (24) ◽  
pp. 18227-18245
Author(s):  
Amir H. Souri ◽  
Kelly Chance ◽  
Juseon Bak ◽  
Caroline R. Nowlan ◽  
Gonzalo González Abad ◽  
...  

Abstract. Questions about how emissions are changing during the COVID-19 lockdown periods cannot be answered by observations of atmospheric trace gas concentrations alone, in part due to simultaneous changes in atmospheric transport, emissions, dynamics, photochemistry, and chemical feedback. A chemical transport model simulation benefiting from a multi-species inversion framework using well-characterized observations should differentiate those influences enabling to closely examine changes in emissions. Accordingly, we jointly constrain NOx and VOC emissions using well-characterized TROPOspheric Monitoring Instrument (TROPOMI) HCHO and NO2 columns during the months of March, April, and May 2020 (lockdown) and 2019 (baseline). We observe a noticeable decline in the magnitude of NOx emissions in March 2020 (14 %–31 %) in several major cities including Paris, London, Madrid, and Milan, expanding further to Rome, Brussels, Frankfurt, Warsaw, Belgrade, Kyiv, and Moscow (34 %–51 %) in April. However, NOx emissions remain at somewhat similar values or even higher in some portions of the UK, Poland, and Moscow in March 2020 compared to the baseline, possibly due to the timeline of restrictions. Comparisons against surface monitoring stations indicate that the constrained model underrepresents the reduction in surface NO2. This underrepresentation correlates with the TROPOMI frequency impacted by cloudiness. During the month of April, when ample TROPOMI samples are present, the surface NO2 reductions occurring in polluted areas are described fairly well by the model (model: −21 ± 17 %, observation: −29 ± 21 %). The observational constraint on VOC emissions is found to be generally weak except for lower latitudes. Results support an increase in surface ozone during the lockdown. In April, the constrained model features a reasonable agreement with maximum daily 8 h average (MDA8) ozone changes observed at the surface (r=0.43), specifically over central Europe where ozone enhancements prevail (model: +3.73 ± 3.94 %, +1.79 ppbv, observation: +7.35 ± 11.27 %, +3.76 ppbv). The model suggests that physical processes (dry deposition, advection, and diffusion) decrease MDA8 surface ozone in the same month on average by −4.83 ppbv, while ozone production rates dampened by largely negative JNO2[NO2]-kNO+O3[NO][O3] become less negative, leading ozone to increase by +5.89 ppbv. Experiments involving fixed anthropogenic emissions suggest that meteorology contributes to 42 % enhancement in MDA8 surface ozone over the same region with the remaining part (58 %) coming from changes in anthropogenic emissions. Results illustrate the capability of satellite data of major ozone precursors to help atmospheric models capture ozone changes induced by abrupt emission anomalies.


2017 ◽  
Author(s):  
Wanyun Xu ◽  
Xiaobin Xu ◽  
Meiyun Lin ◽  
Weili Lin ◽  
Jie Tang ◽  
...  

Abstract. Interannual variability and long-term trends of tropospheric ozone are both of environmental and climate concerns. Ozone measured at Mt. Waliguan Observatory (WLG, 3816 m asl) on the Tibetan Plateau over the period 19947ndash;2013 has increased significantly by 0.2–0.3 ppbv year-1 during spring and autumn, but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry-climate model hindcast simulations (GFDL-AM3), a trajectory-mapped ozonesonde dataset and various climate indices. A stratospheric ozone tracer implemented in GFDL-AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ~ 70 % of the observed springtime ozone increase at WLG, consistent with an increase in the NW air mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high-ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originated from Southeast Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors is the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL-AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv year-1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv year-1 at WLG in autumn under conditions with strong transport from Southeast Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last two decades, which likely explains why summertime ozone measured at WLG shows no significant trend despite ozone increases in Eastern China. Analysis of the Trajectory-mapped Ozonesonde dataset for the Stratosphere and Troposphere (TOST) and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the QBO, the North Atlantic Oscillation (NAO), the East Asian summer monsoon (EASM) and the sunspot cycle. Our results suggest that the 2–3 year, 3–7 year and 11 year periodicities are linked to QBO, EASMI and NAO and the sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.


2018 ◽  
Vol 18 (2) ◽  
pp. 773-798 ◽  
Author(s):  
Wanyun Xu ◽  
Xiaobin Xu ◽  
Meiyun Lin ◽  
Weili Lin ◽  
David Tarasick ◽  
...  

Abstract. Inter-annual variability and long-term trends in tropospheric ozone are both environmental and climate concerns. Ozone measured at Mt Waliguan Observatory (WLG, 3816 m a.s.l.) on the Tibetan Plateau over the period of 1994–2013 has increased significantly by 0.2–0.3 ppbv yr−1 during spring and autumn but shows a much smaller trend in winter and no significant trend in summer. Here we explore the factors driving the observed ozone changes at WLG using backward trajectory analysis, chemistry–climate model hindcast simulations (GFDL AM3), a trajectory-mapped ozonesonde data set, and several climate indices. A stratospheric ozone tracer implemented in GFDL AM3 indicates that stratosphere-to-troposphere transport (STT) can explain ∼ 60 % of the simulated springtime ozone increase at WLG, consistent with an increase in the NW air-mass frequency inferred from the trajectory analysis. Enhanced STT associated with the strengthening of the mid-latitude jet stream contributes to the observed high ozone anomalies at WLG during the springs of 1999 and 2012. During autumn, observations at WLG are more heavily influenced by polluted air masses originating from South East Asia than in the other seasons. Rising Asian anthropogenic emissions of ozone precursors are the key driver of increasing autumnal ozone observed at WLG, as supported by the GFDL AM3 model with time-varying emissions, which captures the observed ozone increase (0.26 ± 0.11 ppbv yr−1). AM3 simulates a greater ozone increase of 0.38 ± 0.11 ppbv yr−1 at WLG in autumn under conditions with strong transport from South East Asia and shows no significant ozone trend in autumn when anthropogenic emissions are held constant in time. During summer, WLG is mostly influenced by easterly air masses, but these trajectories do not extend to the polluted regions of eastern China and have decreased significantly over the last 2 decades, which likely explains why summertime ozone measured at WLG shows no significant trend despite ozone increases in eastern China. Analysis of the Trajectory-mapped Ozonesonde data set for the Stratosphere and Troposphere (TOST) and trajectory residence time reveals increases in direct ozone transport from the eastern sector during autumn, which adds to the autumnal ozone increase. We further examine the links of ozone variability at WLG to the quasi-biennial oscillation (QBO), the East Asian summer monsoon (EASM), and the sunspot cycle. Our results suggest that the 2–3-, 3–7-, and 11-year periodicities are linked to the QBO, EASM index, and sunspot cycle, respectively. A multivariate regression analysis is performed to quantify the relative contributions of various factors to surface ozone concentrations at WLG. Through an observational and modelling analysis, this study demonstrates the complex relationships between surface ozone at remote locations and its dynamical and chemical influencing factors.


Sign in / Sign up

Export Citation Format

Share Document