remote troposphere
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 23)

H-INDEX

14
(FIVE YEARS 4)

2021 ◽  
Vol 118 (52) ◽  
pp. e2109628118
Author(s):  
Ilann Bourgeois ◽  
Jeff Peischl ◽  
J. Andrew Neuman ◽  
Steven S. Brown ◽  
Chelsea R. Thompson ◽  
...  

Ozone is the third most important anthropogenic greenhouse gas after carbon dioxide and methane but has a larger uncertainty in its radiative forcing, in part because of uncertainty in the source characteristics of ozone precursors, nitrogen oxides, and volatile organic carbon that directly affect ozone formation chemistry. Tropospheric ozone also negatively affects human and ecosystem health. Biomass burning (BB) and urban emissions are significant but uncertain sources of ozone precursors. Here, we report global-scale, in situ airborne measurements of ozone and precursor source tracers from the NASA Atmospheric Tomography mission. Measurements from the remote troposphere showed that tropospheric ozone is regularly enhanced above background in polluted air masses in all regions of the globe. Ozone enhancements in air with high BB and urban emission tracers (2.1 to 23.8 ppbv [parts per billion by volume]) were generally similar to those in BB-influenced air (2.2 to 21.0 ppbv) but larger than those in urban-influenced air (−7.7 to 6.9 ppbv). Ozone attributed to BB was 2 to 10 times higher than that from urban sources in the Southern Hemisphere and the tropical Atlantic and roughly equal to that from urban sources in the Northern Hemisphere and the tropical Pacific. Three independent global chemical transport models systematically underpredict the observed influence of BB on tropospheric ozone. Potential reasons include uncertainties in modeled BB injection heights and emission inventories, export efficiency of BB emissions to the free troposphere, and chemical mechanisms of ozone production in smoke. Accurately accounting for intermittent but large and widespread BB emissions is required to understand the global tropospheric ozone burden.


2021 ◽  
Vol 21 (18) ◽  
pp. 13729-13746
Author(s):  
Hao Guo ◽  
Clare M. Flynn ◽  
Michael J. Prather ◽  
Sarah A. Strode ◽  
Stephen D. Steenrod ◽  
...  

Abstract. The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic oceans. In this paper we present and analyze a data set of 10 s (2 km) merged and gap-filled observations of the key reactive species driving the chemical budgets of O3 and CH4 (O3, CH4, CO, H2O, HCHO, H2O2, CH3OOH, C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3, HNO4, peroxyacetyl nitrate, other organic nitrates), consisting of 146 494 distinct air parcels from ATom deployments 1 through 4. Six models calculated the O3 and CH4 photochemical tendencies from this modeling data stream for ATom 1. We find that 80 %–90 % of the total reactivity lies in the top 50 % of the parcels and 25 %–35 % in the top 10 %, supporting previous model-only studies that tropospheric chemistry is driven by a fraction of all the air. In other words, accurate simulation of the least reactive 50 % of the troposphere is unimportant for global budgets. Surprisingly, the probability densities of species and reactivities averaged on a model scale (100 km) differ only slightly from the 2 km ATom data, indicating that much of the heterogeneity in tropospheric chemistry can be captured with current global chemistry models. Comparing the ATom reactivities over the tropical oceans with climatological statistics from six global chemistry models, we find excellent agreement with the loss of O3 and CH4 but sharp disagreement with production of O3. The models sharply underestimate O3 production below 4 km in both Pacific and Atlantic basins, and this can be traced to lower NOx levels than observed. Attaching photochemical reactivities to measurements of chemical species allows for a richer, yet more constrained-to-what-matters, set of metrics for model evaluation.


2021 ◽  
Author(s):  
Hao Guo ◽  
Clare M. Flynn ◽  
Michael J. Prather ◽  
Sarah A. Strode ◽  
Stephen D. Steenrod ◽  
...  

Abstract. The NASA Atmospheric Tomography (ATom) mission built a photochemical climatology of air parcels based on in situ measurements with the NASA DC-8 aircraft along objectively planned profiling transects through the middle of the Pacific and Atlantic Oceans. ATom measured numerous gases and aerosols, particularly the gaseous species driving the chemical budgets of O3 and CH4: i.e., O3, CH4, CO, C2H6, higher alkanes, alkenes, aromatics, NOx, HNO3, HNO4, peroxyacetylnitrate, other organic nitrates, H2O, HCHO, H2O2, and CH3OOH. From the 10 s (2 km) merged observations, a modeling data stream (MDS) based on observations of the core species, consisting of 146,494 distinct air parcels has been constructed from the 4 ATom deployments, providing a continuous data stream for initializing global chemistry models and calculating the 24-hour chemical tendencies. Tendencies derived from 6 chemistry models using the ATom-1 MDS tend to agree and show a highly heterogeneous troposphere where globally 10% of the parcels control as much as 40% of the budget of O3 and CH4. Surprisingly, modeled probability distributions (100-km cells) match ATom statistics (2 km parcels), indicating that the majority of the observed heterogeneity can be resolved with current global chemistry models. On the other hand, the models' own chemical climatologies underestimate O3 production below 4 km in both Pacific and Atlantic basins because they have lower NOX levels than observed.


2021 ◽  
Author(s):  
Hao Guo ◽  
Clare M. Flynn ◽  
Michael J. Prather ◽  
Sarah A. Strode ◽  
Stephen D. Steenrod ◽  
...  

2021 ◽  
Vol 14 (4) ◽  
pp. 3071-3085
Author(s):  
Simone T. Andersen ◽  
Lucy J. Carpenter ◽  
Beth S. Nelson ◽  
Luis Neves ◽  
Katie A. Read ◽  
...  

Abstract. Atmospheric nitrogen oxides (NO + NO2 = NOx) have been measured at the Cape Verde Atmospheric Observatory (CVAO) in the tropical Atlantic (16∘51′ N, 24∘52′ W) since October 2006. These measurements represent a unique time series of NOx in the background remote troposphere. Nitrogen dioxide (NO2) is measured via photolytic conversion to nitric oxide (NO) by ultraviolet light-emitting diode arrays followed by chemiluminescence detection. Since the measurements began, a blue light converter (BLC) has been used for NO2 photolysis, with a maximum spectral output of 395 nm from 2006 to 2015 and of 385 nm from 2015 onwards. The original BLC used was constructed with a Teflon-like material and appeared to cause an overestimation of NO2 when illuminated. To avoid such interferences, a new additional photolytic converter (PLC) with a quartz photolysis cell (maximum spectral output also 385 nm) was implemented in March 2017. Once corrections are made for the NO2 artefact from the original BLC, the two NO2 converters are shown to give comparable NO2 mixing ratios (BLC = 0.99 × PLC + 0.7 ppt, linear least-squares regression), giving confidence in the quantitative measurement of NOx at very low levels. Data analysis methods for the NOx measurements made at CVAO have been developed and applied to the entire time series to produce an internally consistent and high-quality long-term data set. NO has a clear diurnal pattern with a maximum mixing ratio of 2–10 ppt during the day depending on the season and ∼ 0 ppt during the night. NO2 shows a fairly flat diurnal signal, although a small increase in daytime NOx is evident in some months. Monthly average mixing ratios of NO2 vary between 5 and 30 ppt depending on the season. Clear seasonal trends in NO and NO2 levels can be observed with a maximum in autumn and winter and a minimum in spring and summer.


2021 ◽  
Vol 14 (3) ◽  
pp. 2237-2260
Author(s):  
Melinda K. Schueneman ◽  
Benjamin A. Nault ◽  
Pedro Campuzano-Jost ◽  
Duseong S. Jo ◽  
Douglas A. Day ◽  
...  

Abstract. Aerosol sulfate is a major component of submicron particulate matter (PM1). Sulfate can be present as inorganic (mainly ammonium sulfate, AS) or organosulfate (OS). Although OS is thought to be a smaller fraction of total sulfate in most cases, recent literature argues that this may not be the case in more polluted environments. Aerodyne aerosol mass spectrometers (AMSs) measure total submicron sulfate, but it has been difficult to apportion AS vs. OS as the detected ion fragments are similar. Recently, two new methods have been proposed to quantify OS separately from AS with AMS data. We use observations collected during several airborne field campaigns covering a wide range of sources and air mass ages (spanning the continental US, marine remote troposphere, and Korea) and targeted laboratory experiments to investigate the performance and validity of the proposed OS methods. Four chemical regimes are defined to categorize the factors impacting sulfate fragmentation. In polluted areas with high ammonium nitrate concentrations and in remote areas with high aerosol acidity, the decomposition and fragmentation of sulfate in the AMS is influenced by multiple complex effects, and estimation of OS does not seem possible with current methods. In regions with lower acidity (pH > 0) and ammonium nitrate (fraction of total mass < 0.3), the proposed OS methods might be more reliable, although application of these methods often produced nonsensical results. However, the fragmentation of ambient neutralized sulfate varies somewhat within studies, adding uncertainty, possibly due to variations in the effect of organics. Under highly acidic conditions (when calculated pH < 0 and ammonium balance < 0.65), sulfate fragment ratios show a clear relationship with acidity. The measured ammonium balance (and to a lesser extent, the HySOx+ / SOx+ AMS ratio) is a promising indicator of rapid estimation of aerosol pH < 0, including when gas-phase NH3 and HNO3 are not available. These results allow an improved understanding of important intensive properties of ambient aerosols.


2020 ◽  
Author(s):  
Simone T. Andersen ◽  
Lucy J. Carpenter ◽  
Beth S. Nelson ◽  
Luis Neves ◽  
Katie A. Read ◽  
...  

Abstract. Atmospheric nitrogen oxides (NO + NO2 = NOx) have been measured at the Cape Verde Atmospheric Observatory (CVAO) in the tropical Atlantic (16° 51' N, 24° 52' W) since October 2006. These measurements represent a unique time series of NOx in the background remote troposphere. Nitrogen dioxide (NO2) is measured via photolytic conversion to nitric oxide (NO) by ultra violet light emitting diode arrays followed by chemiluminescence detection. Since the measurements began, a blue light converter (BLC) has been used for NO2 photolysis, with a maximum spectral output of 395 nm from 2006–2015 and of 385 nm from 2015. The original BLC used was constructed with a Teflon-like material and appeared to cause an overestimation of NO2 when illuminated. To avoid such interferences, a new additional photolytic converter (PLC) with a quartz photolysis cell (maximum spectral output also 385 nm) was implemented in March 2017. Once corrections are made for the NO2 artefact from the original BLC, the two NO2 converters are shown to give comparable NO2 mixing ratios (PLC = 0.92 × BLC, R2 = 0.92), giving confidence in the quantitative measurement of NOx at very low levels. Data analysis methods for the NOx measurements made at CVAO have been developed and applied to the entire time series to produce an internally consistent and high quality long-term data set. NO has a clear diurnal pattern with a maximum mixing ratio of 2–10 pptV during the day depending on the season and ~0 pptV during the night. NO2 shows a fairly flat diurnal signal, although a small increase in daytime NOx is evident in some months. Monthly average mixing ratios of NO2 vary between 5 and 30 pptV depending on the season. Clear seasonal trends in NO and NO2 levels can be observed with a maximum in autumn/winter and a minimum in spring/summer.


2020 ◽  
Vol 20 (17) ◽  
pp. 10611-10635 ◽  
Author(s):  
Ilann Bourgeois ◽  
Jeff Peischl ◽  
Chelsea R. Thompson ◽  
Kenneth C. Aikin ◽  
Teresa Campos ◽  
...  

Abstract. Ozone is a key constituent of the troposphere, where it drives photochemical processes, impacts air quality, and acts as a climate forcer. Large-scale in situ observations of ozone commensurate with the grid resolution of current Earth system models are necessary to validate model outputs and satellite retrievals. In this paper, we examine measurements from the Atmospheric Tomography (ATom; four deployments in 2016–2018) and the HIAPER Pole-to-Pole Observations (HIPPO; five deployments in 2009–2011) experiments, two global-scale airborne campaigns covering the Pacific and Atlantic basins. ATom and HIPPO represent the first global-scale, vertically resolved measurements of O3 distributions throughout the troposphere, with HIPPO sampling the atmosphere over the Pacific and ATom sampling both the Pacific and Atlantic. Given the relatively limited temporal resolution of these two campaigns, we first compare ATom and HIPPO ozone data to longer-term observational records to establish the representativeness of our dataset. We show that these two airborne campaigns captured on average 53 %, 54 %, and 38 % of the ozone variability in the marine boundary layer, free troposphere, and upper troposphere–lower stratosphere (UTLS), respectively, at nine well-established ozonesonde sites. Additionally, ATom captured the most frequent ozone concentrations measured by regular commercial aircraft flights in the northern Atlantic UTLS. We then use the repeated vertical profiles from these two campaigns to confirm and extend the existing knowledge of tropospheric ozone spatial and vertical distributions throughout the remote troposphere. We highlight a clear hemispheric gradient, with greater ozone in the Northern Hemisphere, consistent with greater precursor emissions and consistent with previous modeling and satellite studies. We also show that the ozone distribution below 8 km was similar in the extra-tropics of the Atlantic and Pacific basins, likely due to zonal circulation patterns. However, twice as much ozone was found in the tropical Atlantic as in the tropical Pacific, due to well-documented dynamical patterns transporting continental air masses over the Atlantic. Finally, we show that the seasonal variability of tropospheric ozone over the Pacific and the Atlantic basins is driven year-round by transported continental plumes and photochemistry, and the vertical distribution is driven by photochemistry and mixing with stratospheric air. This new dataset provides additional constraints for global climate and chemistry models to improve our understanding of both ozone production and loss processes in remote regions, as well as the influence of anthropogenic emissions on baseline ozone.


2020 ◽  
Author(s):  
Melinda K. Schueneman ◽  
Benjamin A. Nault ◽  
Pedro Campuzano-Jost ◽  
Duseong S. Jo ◽  
Douglas A. Day ◽  
...  

Abstract. Aerosol sulfate is a major component of submicron particulate matter (PM1). Sulfate can be present as inorganic (mainly ammonium sulfate, AS) or organic sulfate (OS). Although OS are thought to be a smaller fraction of total sulfate in most cases, recent literature argues that this may not be the case in more polluted environments. Aerodyne Aerosol Mass Spectrometers (AMS) measure total submicron sulfate, but it has been difficult to apportion AS vs. OS as the detected ion fragments are similar. Recently, two new methods have been proposed to quantify OS separately from AS with AMS data. We use observations collected during several airborne field campaigns covering a wide range of sources and airmass ages (spanning the continental US, marine remote troposphere, and Korea) and targeted laboratory experiments to investigate the performance and validity of the proposed OS methods. Four chemical regimes are defined to categorize the factors impacting sulfate fragmentation (Fig. shown in abstract). In polluted areas with high ammonium nitrate concentrations and in remote areas with high aerosol acidity, the decomposition and fragmentation of sulfate in the AMS is influenced by multiple complex effects, and estimation of OS does not seem possible with current methods. In regions with lower acidity (pH>0) and ammonium nitrate (fraction<0.3), the proposed OS methods might be more reliable, although application of these methods often produced nonsensical results. However, the fragmentation of ambient neutralized sulfate varies somewhat within studies, adding uncertainty, possibly due to variations in the effect of organics. Under highly acidic conditions, sulfate fragment ratios show a clear relationship with acidity (pH and ammonium balance). The measured ammonium balance (and to a lesser extent, the HySOx+/SOx+ AMS ratio) is a promising indicator for rapid estimation of aerosol pH < 0, including when gas-phase NH3 and HNO3 are not available. These results allow an improved understanding of important intensive properties of ambient aerosols.


2020 ◽  
Vol 13 (6) ◽  
pp. 422-427 ◽  
Author(s):  
G. P. Schill ◽  
K. D. Froyd ◽  
H. Bian ◽  
A. Kupc ◽  
C. Williamson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document