scholarly journals Supplementary material to "Enhanced growth rate of atmospheric particles from sulfuric acid"

Author(s):  
Dominik Stolzenburg ◽  
Mario Simon ◽  
Ananth Ranjithkumar ◽  
Andreas Kürten ◽  
Katrianne Lehtipalo ◽  
...  
2019 ◽  
Author(s):  
Dominik Stolzenburg ◽  
Mario Simon ◽  
Ananth Ranjithkumar ◽  
Andreas Kürten ◽  
Katrianne Lehtipalo ◽  
...  

Abstract. In the present-day atmosphere, sulfuric acid is the most important vapour for aerosol particle formation and initial growth. However, the growth rates of nanoparticles (


Author(s):  
Runlong Cai ◽  
Chao Yan ◽  
Dongsen Yang ◽  
Rujing Yin ◽  
Yiqun Lu ◽  
...  

2013 ◽  
Vol 13 (13) ◽  
pp. 6637-6646 ◽  
Author(s):  
Z. Wu ◽  
W. Birmili ◽  
L. Poulain ◽  
Z. Wang ◽  
M. Merkel ◽  
...  

Abstract. This study examines the hygroscopicity of newly formed particles (diameters range 25–45 nm) during two atmospheric new particle formation (NPF) events in the German mid-level mountains during the Hill Cap Cloud Thuringia 2010 (HCCT-2010) field experiment. At the end of the NPF event involving clear particle growth, we measured an unusually high soluble particle fraction of 58.5% at 45 nm particle size. The particle growth rate contributed through sulfuric acid condensation only accounts for around 6.5% of the observed growth rate. Estimations showed that sulfuric acid condensation explained, however, only around 10% of that soluble particle fraction. Therefore, the formation of additional water-soluble matter appears imperative to explain the missing soluble fraction. Although direct evidence is missing, we consider water-soluble organics as candidates for this mechanism. For the case with clear growth process, the particle growth rate was determined by two alternative methods based on tracking the mode diameter of the nucleation mode. The mean particle growth rate obtained from the inter-site data comparison using Lagrangian consideration is 3.8 (± 2.6) nm h−1. During the same period, the growth rate calculated based on one site data is 5.0 nm h−1 using log-normal distribution function method. In light of the fact that considerable uncertainties could be involved in both methods, we consider both estimated growth rates consistent.


2012 ◽  
Vol 12 (20) ◽  
pp. 9923-9939 ◽  
Author(s):  
H. Guo ◽  
D. W. Wang ◽  
K. Cheung ◽  
Z. H. Ling ◽  
C. K. Chan ◽  
...  

Abstract. In order to investigate the formation and growth processes of nucleation mode particles, and to quantify the particle number (PN) concentration and size distributions in Hong Kong, an intensive field measurement was conducted from 25 October to 29 November in 2010 near the mountain summit of Tai Mo Shan, a suburban site approximately the geographical centre of the New Territories in Hong Kong. Based on observations of the particle size distribution, new particle formation (NPF) events were found on 12 out of 35 days with the estimated formation rate J5.5 from 0.97 to 10.2 cm−3 s−1, and the average growth rates from 1.5 to 8.4 nm h−1. The events usually began at 10:00–11:00 LT characterized by the occurrence of a nucleation mode with a peak diameter of 6–10 nm. Solar radiation, wind speed, sulfur dioxide (SO2) and ozone (O3) concentrations were on average higher, whereas temperature, relative humidity and daytime nitrogen dioxide (NO2) concentration were lower on NPF days than on non-NPF days. Back trajectory analysis suggested that in majority of the NPF event days, the air masses originated from the northwest to northeast directions. The concentrations of gaseous sulfuric acid (SA) showed good power-law relationship with formation rates, with exponents ranging from 1 to 2. The result suggests that the cluster activation theory and kinetic nucleation could potentially explain the observed NPF events in this mountainous atmosphere of Hong Kong. Meanwhile, in these NPF events, the contribution of sulfuric acid vapor to particle growth rate (GR5.5–25) ranged from 9.2 to 52.5% with an average of 26%. Measurement-based calculated oxidation rates of monoterpenes (i.e. α-pinene, β-pinene, myrcene and limonene) by O3 positively correlated with the GR5.5–25 (R = 0.80, p < 0.05). The observed associations of the estimated formation rate J5.5 and the growth rate GR5.5–25 with gaseous sulfuric acid and volatile organic compounds (VOCs) suggested the critical roles of sulfuric acid and biogenic VOCs (e.g. α-pinene and β-pinene) in these NPF events.


Sign in / Sign up

Export Citation Format

Share Document