scholarly journals Secondary organic aerosol formation from photooxidation of furan: effects of NOx and humidity

Author(s):  
Xiaotong Jiang ◽  
Narcisse T. Tsona ◽  
Long Jia ◽  
Shijie Liu ◽  
Hailiang Zhang ◽  
...  

Abstract. Atmospheric furan is a primary and secondary pollutant in the atmosphere, and its emission contributes to the formation of ultrafine particles and ground-level ozone. We investigate the effects of NOx level and humidity on the formation of secondary organic aerosol (SOA) generated from the photooxidation of furan in the presence of NaCl seed particles. The particle mass concentration and size distribution were determined with a scanning mobility particle sizer (SMPS). SOA mass concentration and yield were determined under different NOx and humidity levels. A significant difference is observed both in the SOA mass concentration and SOA yield variation with the initial experimental conditions. Six organic products were identified in the collected SOA by electrospray ionization exactive orbitrap mass spectrometry (ESI-Exactive-Orbitrap MS). The –COOH, –OH, –C=O and NO2 functional groups were assigned in the FTIR spectra and used as the indicator for the mechanism inference. In addition, O3 formation was also observed during the furan-NOx-NaCl photooxidation. Based on the MS analysis, the reaction mechanism was proposed to follow the RO2+NO pathway. A significant amount of carbonyl-rich products was detected in the SOA products from the photooxidation of furan. The SOA mass concentration and yield increase with increasing humidity, because higher aerosol liquid water content brings more aqueous phase reactions. The present study demonstrates the effect of NOx and humidity on SOA formation during the furan-NOx-NaCl photooxidation. Furthermore, the results illustrate the importance of studying SOA formation over a comprehensive range of environmental conditions. Only such evaluations can induce meaningful SOA mechanisms to be implemented in air quality models.

2018 ◽  
Author(s):  
Xiaotong Jiang ◽  
Narcisse T. Tsona ◽  
Long Jia ◽  
Shijie Liu ◽  
Yongfu Xu ◽  
...  

Abstract. Atmospheric furan is both primary and secondary pollutants in the atmosphere, and their emission contributes to the formation of ultrafine particles and ground-level ozone. We investigate the effects of NOx level and humidity on the formation of secondary organic aerosol (SOA) generated from the photooxidation of furan in the presence of NaCl seed particles. The particle mass concentration and size distribution were determined with a scanning mobility particle sizer (SMPS). SOA mass concentration and yield were determined under different NOx and humidity levels. Owing to condensation and coagulation, the particle number concentration decreases with increasing particle size. A significant difference is observed both in the SOA mass concentration and SOA yield variation with the initial experiment conditions. A relatively high NOx level, ranging from 16.8 to 97.5 ppb, contributes to effective formation of SOA in the presence of NaCl seed particles, with the mass concentration of SOA and SOA yield ranging from 0.96 μg m−3 to 23.46 μg m−3 and from 0.04 % to 1.01 %, respectively. Likewise, the SOA mass concentration and yield increase with increasing humidity, because the increasing RH increases the aerosol liquid water content, which contributes to the liquid phase reactions. Nine organic nitrate species were detected by electrospray ionization exactive orbitrap mass spectrometry (ESI-Exactive-Orbitrap MS). The -COOH,-OH,-C = O and NO2 functional groups were assigned in the FTIR spectra and used as the indicator for the mechanism inference. The present study directly addresses NOx effects and reinforces the implication of humidity on SOA formation during the furan-NOx-NaCl photooxidation. Furthermore, the results illustrate the importance of studying SOA formation over a comprehensive range of environmental conditions. Only such evaluations can induce meaningful SOA mechanisms to be implemented in air quality models.


2019 ◽  
Vol 19 (21) ◽  
pp. 13591-13609 ◽  
Author(s):  
Xiaotong Jiang ◽  
Narcisse T. Tsona ◽  
Long Jia ◽  
Shijie Liu ◽  
Hailiang Zhang ◽  
...  

Abstract. Atmospheric furan is a primary and secondary pollutant in the atmosphere, and its emission contributes to the formation of ultrafine particles. We investigate the effects of NOx level and humidity on the formation of secondary organic aerosol (SOA) generated from the photooxidation of furan in the presence of NaCl seed particles. SOA mass concentration and yield were determined under different NOx and humidity levels. A significant difference is observed both in the variation of SOA mass concentration and SOA yield with the initial experimental conditions. Varying VOC (volatile organic compound) ∕ NOx ratios over the range 48.1 to 8.2 contributes to the effective formation of SOA in the presence of NaCl seed particles, with the SOA mass concentration and SOA yield ranging from 0.96 to 23.46 µg m−3 and from 0.04 % to 1.01 %, respectively. We found that there was a favourable relationship between the SOA yields and NOx concentration. In particular, the increase in SOA yield with increasing NOx concentration was continuously observed at high NOx levels owing to a corresponding increase in the amount of low-volatility hydroxyl nitrates and dihydroxyl dinitrates that can partition into the particle phase. In addition, varying relative humidity (RH) from 5 % to 88 % increased the SOA yield from 1.01 % to 5.03 %. The enhanced SOA formation from humid conditions may result from the high OH concentration, rapid furan decay rate, enhanced carbonyl-rich products condensation, and the aqueous-phase reactions. Using hybrid quadrupole-orbitrap mass spectrometer equipped with electrospray ionization (HESI-Q Exactive-Orbitrap MS), three carbonyl-rich products and three kinds of organonitrates were identified in the collected SOA. Based on the HESI-Q Exactive-Orbitrap MS analysis and Fourier transform infrared spectroscopy (FTIR), the reaction mechanism of furan photooxidation was proposed. This study demonstrates the effects of NOx and humidity on SOA formation during the furan–NOx–NaCl photooxidation and provides new insights into the oxidation regime and SOA composition in furan photooxidation. The results also illustrate the importance of studying SOA formation over a comprehensive range of environmental conditions. Only such evaluations can induce meaningful SOA mechanisms to be implemented in air quality models.


2009 ◽  
Vol 9 (6) ◽  
pp. 1907-1928 ◽  
Author(s):  
R. Volkamer ◽  
P. J. Ziemann ◽  
M. J. Molina

Abstract. The lightest Non Methane HydroCarbon (NMHC), i.e., acetylene (C2H2) is found to form secondary organic aerosol (SOA). Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO) as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosols, mild acidification with sulphuric acid (SA, 3<pH<4), and relative humidity (10<RH<90%). The rate of SOA formation is found enhanced by several orders of magnitude in the photochemical system. The SOA yields (YSOA) ranged from 1% to 24% and did not correlate with the organic mass portion of the seed, but increased linearly with liquid water content (LWC) of the seed. For fixed LWC, YSOA varied by more than a factor of five. Water soluble organic carbon (WSOC) photochemistry in the liquid water associated with internally mixed inorganic/WSOC seed aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA) and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e., does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.


2008 ◽  
Vol 8 (4) ◽  
pp. 14841-14892 ◽  
Author(s):  
R. Volkamer ◽  
P. J. Ziemann ◽  
M. J. Molina

Abstract. The lightest Non Methane HydroCarbon (NMHC), i.e. acetylene (C2H2) is found to form secondary organic aerosol (SOA). Contrary to current belief, the number of carbon atoms, n, for a NMHC to act as SOA precursor is lowered to n=2 here. The OH-radical initiated oxidation of C2H2 forms glyoxal (CHOCHO) as the highest yield product, and >99% of the SOA from C2H2 is attributed to CHOCHO. SOA formation from C2H2 and CHOCHO was studied in a photochemical and a dark simulation chamber. Further, the experimental conditions were varied with respect to the chemical composition of the seed aerosol, mild acidification with sulphuric acid (SA, 3<pH<4), and relative humidity (10<RH<90%). The rate of SOA formation is found enhanced by several orders of magnitude in the photochemical system. The SOA yields (YSOA) ranged from 1% to 20% and did not correlate with the organic mass portion of the seed, but increased linearly with liquid water content (LWC) of the seed. For fixed LWC, YSOA varied by more than a factor of five. Water soluble organic carbon (WSOC) photochemistry in the liquid water associated with internally mixed inorganic/WSOC seed aerosols is found responsible for this seed effect. WSOC photochemistry enhances the SOA source from CHOCHO, while seeds containing amino acids (AA) and/or SA showed among the lowest of all YSOA values, and largely suppress the photochemical enhancement on the rate of CHOCHO uptake. Our results give first evidence for the importance of heterogeneous photochemistry of CHOCHO in SOA formation, and identify a potential bias in the currently available YSOA data for other SOA precursor NMHCs. We demonstrate that SOA formation via the aqueous phase is not limited to cloud droplets, but proceeds also in the absence of clouds, i.e. does not stop once a cloud droplet evaporates. Atmospheric models need to be expanded to include SOA formation from WSOC photochemistry of CHOCHO, and possibly other α-dicarbonyls, in aqueous aerosols.


2016 ◽  
Author(s):  
Lisa Stirnweis ◽  
Claudia Marcolli ◽  
Josef Dommen ◽  
Peter Barmet ◽  
Carla Frege ◽  
...  

Abstract. Secondary organic aerosol (SOA) yields from the photooxidation of α-pinene were investigated in smog chamber (SC) experiments at low (23–29 %) and high (60–69 %) relative humidity (RH), various NOx/VOC ratios (0.04–3.8) and with different aerosol seed chemical compositions (acidic to neutralized sulfate-containing or hydrophobic organic). A combination of a scanning mobility particle sizer and an Aerodyne high resolution time-of-flight aerosol mass spectrometer was used to determine SOA mass concentration and chemical composition. We present wall-loss-corrected yields as a function of absorptive masses combining organics and the bound liquid water content. High RH increased SOA yields by up to six times (1.5–6.4) compared to low RH. The yields at low NOx/VOC ratios were in general higher compared to yields at high NOx/VOC ratios. This NOx dependence follows the same trend as seen in previous studies for α-pinene SOA. A novel approach of data evaluation using volatility distributions derived from experimental data served as basis for thermodynamic phase partitioning calculations of model mixtures in this study. These calculations predict liquid-liquid phase separation into organic-rich and electrolyte phases. At low NOx conditions, equilibrium partitioning between the gas and liquid phases can explain most of the increase in SOA yields at high RH. This is indicated by the model results, when in addition to the α-pinene photooxidation products described in the literature, more fragmented and oxidized organic compounds are added to the model mixtures. This increase is driven by both the increase in the absorptive mass due to the additional particulate water and the solution non-ideality described by the activity coefficients. In contrast, at high NOx, equilibrium partitioning alone could not explain the strong increase in the yields with increased RH. This suggests that other processes including the reactive uptake of semi-volatile species into the liquid phase may occur and be enhanced at higher RH, especially for compounds formed under high NOx conditions such as carbonyls.


2015 ◽  
Vol 15 (6) ◽  
pp. 2953-2968 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
F. Siekmann ◽  
C. Giorio ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. First- and higher order-generation products formed from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber. Significant oxidation rates have been maintained for up to 7 h, allowing the study of highly oxidized products. Gas-phase product distribution and yields were obtained, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation has also been investigated. SOA mass yields from previous studies show large discrepancies. The mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission similar to the solar spectrum. Differences in light source are therefore proposed to explain partially the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. There is a high degree of similarity between the SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e., presence of NOx and long term oxidation). According to our results, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies.


2016 ◽  
Vol 16 (3) ◽  
pp. 1747-1760 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
C. Giorio ◽  
F. Siekmann ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. The impact of cloud events on isoprene secondary organic aerosol (SOA) formation has been studied from an isoprene ∕ NOx ∕ light system in an atmospheric simulation chamber. It was shown that the presence of a liquid water cloud leads to a faster and higher SOA formation than under dry conditions. When a cloud is generated early in the photooxidation reaction, before any SOA formation has occurred, a fast SOA formation is observed with mass yields ranging from 0.002 to 0.004. These yields are 2 and 4 times higher than those observed under dry conditions. When the cloud is generated at a later photooxidation stage, after isoprene SOA is stabilized at its maximum mass concentration, a rapid increase (by a factor of 2 or higher) of the SOA mass concentration is observed. The SOA chemical composition is influenced by cloud generation: the additional SOA formed during cloud events is composed of both organics and nitrate containing species. This SOA formation can be linked to the dissolution of water soluble volatile organic compounds (VOCs) in the aqueous phase and to further aqueous phase reactions. Cloud-induced SOA formation is experimentally demonstrated in this study, thus highlighting the importance of aqueous multiphase systems in atmospheric SOA formation estimations.


2014 ◽  
Vol 14 (16) ◽  
pp. 22507-22545 ◽  
Author(s):  
L. Brégonzio-Rozier ◽  
F. Siekmann ◽  
C. Giorio ◽  
E. Pangui ◽  
S. B. Morales ◽  
...  

Abstract. First- and higher-generation products from the oxidation of isoprene and methacrolein with OH radicals in the presence of NOx have been studied in a simulation chamber: (1) significant oxidation rates have been maintained for up to 7 h allowing the study of highly oxidized products, (2) gas-phase products distribution and yields are provided, and show good agreement with previous studies. Secondary organic aerosol (SOA) formation resulting from these experiments has also been investigated. Among the general dispersion exhibited by SOA mass yields from previous studies, the mass yields obtained here were consistent with the lowest values found in the literature, and more specifically in agreement with studies carried out with natural light or artificial lamps with emission spectrum similar to the solar one. An effect of light source is hence proposed to explain, at least in part, the discrepancies observed between different studies in the literature for both isoprene- and methacrolein-SOA mass yields. A high degree of similarity is shown in the comparison of SOA mass spectra from isoprene and methacrolein photooxidation, thus strengthening the importance of the role of methacrolein in SOA formation from isoprene photooxidation under our experimental conditions (i.e. presence of NOx and long term oxidation). Overall, if these results are further confirmed, SOA mass yields from both isoprene and methacrolein in the atmosphere could be lower than suggested by most of the current chamber studies.


2019 ◽  
Author(s):  
Qun Zhang ◽  
Yongfu Xu ◽  
Long Jia

Abstract. The effect of relative humidity (RH) on the secondary organic aerosol (SOA) formation from the photooxidation of m-xylene initiated by OH radicals in the absence of seed particles was investigated in a smog chamber. The SOA yields were determined based on the particle mass concentrations measured with a scanning mobility particle sizer (SMPS) and reacted m-xylene concentrations measured with a gas chromatograph-mass spectrometer (GC-MS). The SOA components were analyzed using Fourier transform infrared spectrometer (FTIR) and ultrahigh performance liquid chromatograph-electrospray ionization-high-resolution mass spectrometer (UPLC-ESI-HRMS). A significant discrepancy was observed in SOA mass concentration and yield variation with the RH conditions. The SOA yield is 13.8 % and 0.8 % at low RH (13.7 %) and high RH (79.1 %), respectively, with the difference being over an order of magnitude. The relative increase of C-O-C at high RH from the FTIR analysis of functional groups indicates that the oligomers from carbonyl compounds cannot well explain the suppression of SOA yield. Highly oxygenated molecules (HOMs) were observed to be suppressed in the HRMS spectra. The chemical mechanism for explaining the RH effects on SOA formation from m-xylene-OH system is proposed based on the analysis of both FTIR and HRMS measurements as well as Master Chemical Mechanism (MCM) simulations. The reduced SOA at high RH is mainly ascribed to the less formation of oligomers and the suppression of RO2 autoxidation. As a result, high RH can obstruct the oligomerization and autoxidation that contribute to the SOA formation.


Sign in / Sign up

Export Citation Format

Share Document