scholarly journals Supplementary material to "Water uptake of subpollen aerosol particles: hygroscopic growth, CCN activation, and liquid-liquid phase separation"

Author(s):  
Eugene F. Mikhailov ◽  
Mira L. Pöhlker ◽  
Kathrin Reinmuth-Selzle ◽  
Sergey S. Vlasenko ◽  
Ovid O. Krüger ◽  
...  
2020 ◽  
Author(s):  
Eugene F. Mikhailov ◽  
Mira L. Pöhlker ◽  
Kathrin Reinmuth-Selzle ◽  
Sergey S. Vlasenko ◽  
Ovid O. Krüger ◽  
...  

Abstract. Pollen grains emitted from vegetation can release subpollen particles (SPP) that contribute to the fine fraction of atmospheric aerosols and may act as cloud condensation nuclei (CCN), ice nuclei (IN), or aeroallergens. Here, we investigate and characterize the hygroscopic growth and CCN activation of birch, pine, and rapeseed SPP. A high humidity tandem differential mobility analyzer (HHTDMA) was used to measure particle restructuring and water uptake over a wide range of relative humidity (RH) from 2 % to 99.5 %, and a continuous flow CCN counter was used for size-resolved measurements of CCN activation at supersaturations (S) in the range of 0.2 % to 1.2 %. For both, subsaturated and supersaturated conditions, effective hygroscopicity parameters κ, were obtained by Köhler model calculations. Gravimetric and chemical analyses, electron microscopy, and dynamic light scattering measurements were performed to characterize further properties of SPP from aqueous pollen extracts such as chemical composition (starch, proteins, DNA, and inorganic ions) and the hydrodynamic size distribution of water-insoluble material. All investigated SPP samples exhibited sharp increases of water uptake and κ above ~95 % RH, suggesting a liquid-liquid phase separation (LLPS). The HHTDMA measurements at RH > 95 % enable closure between the CCN activation at water vapor supersaturation and hygroscopic growth at subsaturated conditions, which is often not achieved when HTDMA measurements are performed at lower RH where the water uptake and effective hygroscopicity may be limited by the effects of LLPS. Such effects may be important not only for closure between hygroscopic growth and CCN activation but also for the chemical reactivity, allergenic potential, and related health effects of SPP.


2021 ◽  
Vol 21 (9) ◽  
pp. 6999-7022
Author(s):  
Eugene F. Mikhailov ◽  
Mira L. Pöhlker ◽  
Kathrin Reinmuth-Selzle ◽  
Sergey S. Vlasenko ◽  
Ovid O. Krüger ◽  
...  

Abstract. Pollen grains emitted from vegetation can release subpollen particles (SPPs) that contribute to the fine fraction of atmospheric aerosols and may act as cloud condensation nuclei (CCN), ice nuclei (IN), or aeroallergens. Here, we investigate and characterize the hygroscopic growth and CCN activation of birch, pine, and rapeseed SPPs. A high-humidity tandem differential mobility analyzer (HHTDMA) was used to measure particle restructuring and water uptake over a wide range of relative humidity (RH) from 2 % to 99.5 %, and a continuous flow CCN counter was used for size-resolved measurements of CCN activation at supersaturations (S) in the range of 0.2 % to 1.2 %. For both subsaturated and supersaturated conditions, effective hygroscopicity parameters, κ, were obtained by Köhler model calculations. Gravimetric and chemical analyses, electron microscopy, and dynamic light scattering measurements were performed to characterize further properties of SPPs from aqueous pollen extracts such as chemical composition (starch, proteins, DNA, and inorganic ions) and the hydrodynamic size distribution of water-insoluble material. All investigated SPP samples exhibited a sharp increase of water uptake and κ above ∼95 % RH, suggesting a liquid–liquid phase separation (LLPS). The HHTDMA measurements at RH >95 % enable closure between the CCN activation at water vapor supersaturation and hygroscopic growth at subsaturated conditions, which is often not achieved when hygroscopicity tandem differential mobility analyzer (HTDMA) measurements are performed at lower RH where the water uptake and effective hygroscopicity may be limited by the effects of LLPS. Such effects may be important not only for closure between hygroscopic growth and CCN activation but also for the chemical reactivity, allergenic potential, and related health effects of SPPs.


2021 ◽  
Author(s):  
Eugene Mikhailov ◽  
Mira Pöhlker ◽  
Kathrin Reinmuth-Selzle ◽  
Sergey Vlasenko ◽  
Christopher Pöhlker ◽  
...  

<p>Pollen grains emitted from vegetation can release subpollen particles (SPP) that contribute to the fine fraction of atmospheric aerosols and may act as cloud condensation nuclei (CCN), ice nuclei (IN), or aeroallergens. Here, we investigate and characterize the hygroscopic growth and CCN activation of birch, pine, and rapeseed SPP. A high humidity tandem differential mobility analyzer (HHTDMA) was used to measure particle restructuring and water uptake over a wide range of relative humidity (RH) from 2 % to 99.5 %, and a continuous flow CCN counter was used for size-resolved measurements of CCN activation at supersaturations (S) in the range of 0.2 % to 1.2 %. For both subsaturated and supersaturated conditions, effective hygroscopicity parameters к , were obtained by Köhler model calculations. Gravimetric and chemical analyses, electron microscopy, and dynamic light scattering measurements were performed to characterize further properties of SPP from aqueous pollen extracts such as chemical composition (starch, proteins, DNA, and inorganic ions) and the hydrodynamic size distribution of water-insoluble material. All investigated SPP samples exhibited a sharp increase of water uptake and k above ~95 % RH, suggesting a liquid-liquid phase separation (LLPS). The HHTDMA measurements at RH> 95% enable closure between the CCN activation at water vapor supersaturation and hygroscopic growth at subsaturated conditions, which is often not achieved when HTDMA measurements are performed at lower RH where the water uptake and effective hygroscopicity may be limited by the effects of LLPS. Such effects may be important not only for closure between hygroscopic growth and CCN activation but also for the chemical reactivity, allergenic potential, and related health effects of SPP.</p><p>This research has been supported by the Russian Science Foundation (grant no. 18-10 17-00076) and Max Planck Society.</p>


2021 ◽  
Author(s):  
Shuai-Shuai Ma ◽  
Zhe Chen ◽  
Shu-Feng Pang ◽  
Yun-Hong Zhang

Abstract. Atmospheric aerosols consisting of organic and inorganic components may undergo liquid-liquid phase separation (LLPS) and liquid-solid phase transitions during ambient relative humidity (RH) fluctuation. However, the knowledge of dynamic phase evolution processes for mixed organic-inorganic particles is scarce. Here we present a universal and visualized observation on LLPS, efflorescence and deliquescence transitions as well as hygroscopic growth of mixed 1, 2, 6-hexanetriol/ammonium sulfate (AS) particles with different organic-inorganic mole ratios (OIR = 1:4, 1:2, 1:1, 2:1 and 4:1) with the high time resolution (0.5 s), using an optical microscope with a video camera. The optical images suggest that an inner AS solution phase is surrounded by an outer organic-rich phase after LLPS for all mixed particles. The LLPS mechanism for particles with different OIRs differs, meanwhile, multiple mechanisms may dominate successively in individual particles with a certain OIR, somewhat inconsistent with earlier observations by literature. More importantly, another phase separation in inner AS solution phase, defined as secondary LLPS here, is observed for OIR = 1:1, 1:2 and 1:4 particles. The secondary LLPS may be attributed to the formation of more concentrated AS inclusions in the inner phase, and becomes more obvious with decreasing RH and increasing AS mole fraction. Furthermore, the changes in size and amount of AS inclusions during LLPS are quantitatively characterized, which further illustrate the equilibrium partitioning process of organic and inorganic components. The experimental results have significant implications for revelation of complex phase transitions of internally mixed atmospheric particles and evaluation of liquid-liquid and liquid-solid equilibria in thermodynamic models.


2009 ◽  
Vol 113 (41) ◽  
pp. 10966-10978 ◽  
Author(s):  
V. Gabriela Ciobanu ◽  
Claudia Marcolli ◽  
Ulrich K. Krieger ◽  
Uwe Weers ◽  
Thomas Peter

2015 ◽  
Vol 49 (8) ◽  
pp. 4995-5002 ◽  
Author(s):  
Rachel E. O’Brien ◽  
Bingbing Wang ◽  
Stephen T. Kelly ◽  
Nils Lundt ◽  
Yuan You ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document