scholarly journals Supplementary material to "Sensitivity of warm clouds to large particles in measured marine aerosol size distributions – a theoretical study"

Author(s):  
Tom Dror ◽  
J. Michel Flores ◽  
Orit Altaratz ◽  
Guy Dagan ◽  
Zev Levin ◽  
...  
2019 ◽  
Author(s):  
Thomas Lachlan-Cope ◽  
David Beddows ◽  
Neil Brough ◽  
Anna E. Jones ◽  
Roy M. Harrison ◽  
...  

2007 ◽  
Vol 7 (3) ◽  
pp. 7767-7817 ◽  
Author(s):  
S. Otto ◽  
M. de Reus ◽  
T. Trautmann ◽  
A. Thomas ◽  
M. Wendisch ◽  
...  

Abstract. This work will present aerosol size distributions measured in a Saharan dust plume between 0.9 and 12 km altitude during the ACE-2 campaign 1997. The distributions contain a significant fraction of large particles of diameters from 4 to 30 μm. Radiative transfer calculations have been performed using these data as input. Shortwave, longwave as well as total atmospheric radiative effects (AREs) of the dust plume are investigated over ocean and desert within the scope of sensitivity studies considering varied input parameters like solar zenith angle, scaled total dust optical depth, tropospheric standard aerosol profiles and particle complex refractive index. The results indicate that the large particle fraction has a predominant impact on the optical properties of the dust. A single scattering albedo of ωo=0.75–0.96 at 550 nm was simulated in the entire dust column as well as 0.76 within the Saharan dust layer at ~4 km altitude indicating enhanced absorption. The measured dust leads to cooling over the ocean but warming over the desert due to differences in their spectral surface albedo and surface temperature. The large particles absorb strongly and they contribute at least 20% to the ARE in the dusty atmosphere. From the measured size distributions modal parameters of a bimodal lognormal column volume size distribution were deduced, resulting in a coarse median diameter of ~9 μm and a column single scattering albedo of 0.78 at 550 nm. A sensitivity study demonstrates that variabilities in the modal parameters can cause completely different AREs and emphasises the warming effect of the large mineral dust particles.


2020 ◽  
Author(s):  
Tom Dror ◽  
J. Michel Flores ◽  
Orit Altaratz ◽  
Guy Dagan ◽  
Zev Levin ◽  
...  

Abstract. Aerosol size distribution has major effects on warm cloud processes. Here, we use newly acquired marine aerosol size distributions (MSD), measured in-situ over the open ocean during the Tara Pacific expedition (2016–2018), to examine how the total aerosol concentration (Ntot) and the shape of the MSD change warm cloud's properties. For this, we used a toy-model with detailed bin-microphysics. The changes in the MSDs affected the clouds' total mass and surface precipitation. In general, the clouds showed higher sensitivity to changes in Ntot than to changes in the MSD's shape, except for the case where the MSD contained giant and ultragiant cloud condensation nuclei (GCCN, UGCCN). For increased Ntot, most of the MSDs drove an expected non-monotonic trend of mass and precipitation. However, the addition of GCCN and UGCCN drastically changed this trend, such that surface rain saturated and the mass monotonically increased with Ntot. GCCN and UGCCN changed the interplay between the microphysical processes by triggering early initiation of collision-coalescence. The early fall-out of drizzle in those cases enhanced the evaporation below the cloud base. Testing the sensitivity of rain yield to GCCN and UGCCN revealed an enhancement of surface rain upon the addition of larger particles to the MSD, up to a certain particle size, when the addition of larger particles resulted in rain suppression. This finding suggests a physical lower bound can be defined for the size ranges of GCCN and UGCCN.


Sign in / Sign up

Export Citation Format

Share Document