scholarly journals Supplementary material to "Improvement from the satellite-derived NO<sub>x</sub> emissions on air quality modeling and its effect on ozone and secondary inorganic aerosol formation in Yangtze River Delta, China"

Author(s):  
Yang Yang ◽  
Yu Zhao ◽  
Lei Zhang ◽  
Jie Zhang ◽  
Xin Huang ◽  
...  
2018 ◽  
Author(s):  
Junlan Feng ◽  
Yan Zhang ◽  
Shanshan Li ◽  
Jingbo Mao ◽  
Allison P. Patton ◽  
...  

Abstract. The Yangtze River Delta (YRD) and the megacity of Shanghai are host to one of the busiest port clusters in the world, the region also suffers from high levels of air pollution. The goal of this study was to estimate the contributions of shipping to emissions, air quality, and population exposure and characterize their dependence on the geographic spatiality of ship lanes from the regional scale to city scale for 2015. The WRF-CMAQ model was used to simulate the influence of coastal and inland-water shipping, in port emissions, shipping-related cargo transport on air quality and, population-weighted concentrations, a measure of human exposure. Our results showed that the impact of shipping on air quality in the YRD was attributable primarily to shipping emissions within 12 NM of shore, but emissions coming from the coastal area of 24 to 96 NM still contributed substantially to ship-related PM2.5 concentrations in YRD. The overall contribution of ships to PM2.5 concentration in YRD could reach to 4.62 μg/m3 in summer when monsoon winds transport shipping emissions onshore. In Shanghai city, inland-water going ships were major contributors (40–80 %) to the shipping impact on urban air quality. Given the proximity of inland-water ships to urban populations of Shanghai, the emissions of inland-water ships contributed more to population-weighted concentrations. These research results provide scientific evidence to inform policies for controlling future shipping emissions; in particular, stricter standards could be considered for the ships on inland rivers and other waterways close to residential regions.


2020 ◽  
Author(s):  
Jianlin Hu ◽  
Lin Li ◽  
Jingyi Li ◽  
Xueying Wang ◽  
Kangjia Gong

&lt;p&gt;Although the air quality in China has been improved by collaborative efforts dedicating to mitigate the haze pollution, PM2.5 concentrations still remain high levels and the issue of increasing O&lt;sub&gt;3&lt;/sub&gt; concentration has attracted more attention of the public. The YRD region has been suffering from both the PM2.5 and O3 pollution problems. To investigate the formation mechanisms and sources of PM2.5 and O3 in this region, a comprehensive EXPLORE-YRD campaign (EXPeriment on the eLucidation of theatmospheric Oxidation capacity and aerosol foRmation, and their Effects inYangtze River Delta) was carried out in May - June 2018. In this study, we investigate the contributions of different source categories to PM2.5 and O&lt;sub&gt;3&lt;/sub&gt;. A source-oriented 3-D air quality model (CMAQ) was applied to analyze contributions of different emission sources to PM2.5 and O&lt;sub&gt;3 &lt;/sub&gt;in the YRD region. Emissions were divided into eight source categories: industry, power, transportation, residential, agriculture, biogenic, wildfire, and other countries. Contribution from individual source category was quantified. The importance of anthropogenic and natural sources to PM2.5 and O&lt;sub&gt;3&lt;/sub&gt; was discussed.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document