aerosol mass spectrometry
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 37)

H-INDEX

39
(FIVE YEARS 5)

2021 ◽  
Author(s):  
Douglas A. Day ◽  
Pedro Campuzano-Jost ◽  
Benjamin A. Nault ◽  
Brett B. Palm ◽  
Weiwei Hu ◽  
...  

Abstract. Organic nitrate (RONO2) formation in the atmosphere represents a sink of NOx (NOx = NO + NO2) and termination of the NOx/HOx (HOx = HO2 + OH) ozone formation and radical propagation cycles, can act as a NOx reservoir transporting reactive nitrogen, and contributes to secondary organic aerosol formation. While some fraction of RONO2 is thought to reside in the particle phase, particle-phase organic nitrates (pRONO2) are infrequently measured and thus poorly understood. There is an increasing prevalence of aerosol mass spectrometer (AMS) instruments, which have shown promise for determining quantitative total organic nitrate functional group contribution to aerosols. A simple approach that relies on the relative intensities of NO+ and NO2+ ions in the AMS spectrum, the calibrated NOx+ ratio for NH4NO3, and the inferred ratio for pRONO2 has been proposed as a way to apportion the total nitrate signal to NH4NO3 and pRONO2. This method is increasingly being applied to field and laboratory data. However, the methods applied have been largely inconsistent and poorly characterized, and therefore, a detailed evaluation is timely. Here, we compile an extensive survey of NOx+ ratios measured for various pRONO2 compounds and mixtures from multiple AMS instruments, groups, and laboratory and field measurements. We show that, in the absence of pRONO2 standards, the pRONO2 NOx+ ratio can be estimated using a ratio referenced to the calibrated NH4NO3 ratio, a so-called Ratio-of-Ratios method (RoR = 2.75 ± 0.41). We systematically explore the basis for quantifying pRONO2 (and NH4NO3) with the RoR method using ground and aircraft field measurements conducted over a large range of conditions. The method is compared to another AMS method (positive matrix factorization, PMF) and other pRONO2 and related (e.g., total gas + particle RONO2) measurements, generally showing good agreement/correlation. A broad survey of ground and aircraft AMS measurements shows a pervasive trend of higher fractional contribution of pRONO2 to total nitrate with lower total nitrate concentrations, which generally corresponds to shifts from urban-influenced to rural/remote regions. Compared to ground campaigns, observations from all aircraft campaigns showed substantially lower pRONO2 contributions at mid ranges of total nitrate (0.01–0.1 up to 2–5 μg m−3), suggesting that the balance of effects controlling NH4NO3 and pRONO2 formation and lifetimes — such as higher humidity, lower temperatures, greater dilution, different sources, higher particle acidity, and pRONO2 hydrolysis (possibly accelerated by particle acidity) — favors lower pRONO2 contributions for those environments and altitudes sampled.


2021 ◽  
Author(s):  
Amir Yazdani ◽  
Nikunj Dudani ◽  
Satoshi Takahama ◽  
Amelie Bertrand ◽  
André S. H. Prévôt ◽  
...  

Abstract. Aerosol mass spectrometry (AMS) and mid-infrared spectroscopy (MIR) are two analytical methods for characterizing the chemical composition of OM. While AMS provides high-temporal-resolution bulk measurements, the extensive fragmentation during the electron impact (EI) ionization makes the characterization of OM components limited. The analysis of aerosols collected on PTFE filters using MIR, on the other hand, provides functional group (FG) information with reduced sample alteration but results in a relatively low temporal resolution. In this work, we compared and combined MIR and AMS measurements for several environmental chamber experiments to achieve a better understanding of the AMS spectra and the OM chemical evolution by aging. Fresh emissions of wood and coal burning were injected into an environmental simulation chamber and aged with hydroxyl and nitrate radicals. A high-resolution time-of-flight (HR-TOF) AMS measured the bulk chemical composition of fine PM. Fine aerosols were also sampled on PTFE filters before and after aging for the offline MIR analysis. After comparing AMS and MIR bulk measurements, we used multivariate statistics to identify the influential functional groups contributing to AMS OM mass for different aerosol sources and aging processes. We also identified the key mass fragments resulting from each functional group for the complex OM generated from biomass and fossil fuel combustion. Finally, we developed a statistical model that enables estimation of the high-time-resolution functional group composition of OM using collocated AMS and MIR measurements. Using this approach, AMS spectra can be used to interpolate the functional group measurements by MIR, allowing us to better understand the evolution of OM during the aging process.


2021 ◽  
Vol 21 (13) ◽  
pp. 10133-10158
Author(s):  
James M. Cash ◽  
Ben Langford ◽  
Chiara Di Marco ◽  
Neil J. Mullinger ◽  
James Allan ◽  
...  

Abstract. We present the first real-time composition of submicron particulate matter (PM1) in Old Delhi using high-resolution aerosol mass spectrometry (HR-AMS). Old Delhi is one of the most polluted locations in the world, and PM1 concentrations reached ∼ 750 µg m−3 during the most polluted period, the post-monsoon period, where PM1 increased by 188 % over the pre-monsoon period. Sulfate contributes the largest inorganic PM1 mass fraction during the pre-monsoon (24 %) and monsoon (24 %) periods, with nitrate contributing most during the post-monsoon period (8 %). The organics dominate the mass fraction (54 %–68 %) throughout the three periods, and, using positive matrix factorisation (PMF) to perform source apportionment analysis of organic mass, two burning-related factors were found to contribute the most (35 %) to the post-monsoon increase. The first PMF factor, semi-volatility biomass burning organic aerosol (SVBBOA), shows a high correlation with Earth observation fire counts in surrounding states, which links its origin to crop residue burning. The second is a solid fuel OA (SFOA) factor with links to local open burning due to its high composition of polyaromatic hydrocarbons (PAHs) and novel AMS-measured marker species for polychlorinated dibenzodioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs). Two traffic factors were resolved: one hydrocarbon-like OA (HOA) factor and another nitrogen-rich HOA (NHOA) factor. The N compounds within NHOA were mainly nitrile species which have not previously been identified within AMS measurements. Their PAH composition suggests that NHOA is linked to diesel and HOA to compressed natural gas and petrol. These factors combined make the largest relative contribution to primary PM1 mass during the pre-monsoon and monsoon periods while contributing the second highest in the post-monsoon period. A cooking OA (COA) factor shows strong links to the secondary factor, semi-volatility oxygenated OA (SVOOA). Correlations with co-located volatile organic compound (VOC) measurements and AMS-measured organic nitrogen oxides (OrgNO) suggest SVOOA is formed from aged COA. It is also found that a significant increase in chloride concentrations (522 %) from pre-monsoon to post-monsoon correlates well with SVBBOA and SFOA, suggesting that crop residue burning and open waste burning are responsible. A reduction in traffic emissions would effectively reduce concentrations across most of the year. In order to reduce the post-monsoon peak, sources such as funeral pyres, solid waste burning and crop residue burning should be considered when developing new air quality policy.


Sign in / Sign up

Export Citation Format

Share Document