scholarly journals Characteristics of the summer atmospheric boundary layer height over the Tibetan Plateau and influential factors

2020 ◽  
Author(s):  
Junhui Che ◽  
Ping Zhao

Abstract. Based on intensive sounding, surface sensible heat flux, solar radiation, and soil moisture observational datasets from the Third Tibetan Plateau Atmospheric Scientific Experiment and the routine meteorological operational sounding and total cloudiness datasets in the Tibetan Plateau (TP) for the period 2013–2015, we investigate the features of summer atmospheric boundary layer (ABL) over the TP and its major influential factors. It is found that the convective boundary layer (CBL) and the neutral boundary layer (NBL) show remarkable diurnal variations over the TP, while the stable boundary layer (SBL) diurnal variation is weak. In the early morning, the ABL height distribution is narrow, with a small west-east difference. The SBL accounts for 85 % of the TP ABL. At noon, there is a wide distribution in the ABL height up to 4000 m. The CBL accounts for 77 % of the TP ABL, with more than 50 % of the CBL height above 1900 m. The ABL height exhibits a large west-east difference, with a mean height above 2000 m in the western TP and around 1500 m in the eastern TP. In the late afternoon, the CBL and SBL dominate the western and eastern TP, respectively, resulting in a larger west-east difference of 1054.2 m between the western and eastern TP. The high ABL height in a cold environment over the western TP (relative to the plain areas) is similar to that in some extreme hot and arid areas such as Dunhuang and Taklimakan Deserts. For the western (eastern) TP, there is low (high) total cloud coverage, with large (small) solar radiation at the surface and dry (wet) soil. These features result in high (low) sensible heat flux and thus promotes (inhibits) the local ABL development.

2021 ◽  
Vol 21 (7) ◽  
pp. 5253-5268
Author(s):  
Junhui Che ◽  
Ping Zhao

Abstract. The important roles of the Tibetan Plateau (TP) atmospheric boundary layer (ABL) in climate, weather, and air quality have long been recognized, but little is known about the TP ABL climatological features and their west–east discrepancies due to the scarce data in the western TP. Based on observational datasets of intensive sounding, surface sensible heat flux, solar radiation, and soil moisture from the Third Tibetan Plateau Atmospheric Scientific Experiment (TIPEX-III) and the routine meteorological-operational-sounding and ground-based cloud cover datasets in the Tibetan Plateau for the period 2013–2015, we investigate the west–east differences in summer ABL features over the TP and the associated influential factors for the first time. It is found that the heights of both the convective boundary layer (CBL) and the neutral boundary layer (NBL) exhibit a diurnal variation and a west–east difference in the TP, while these features are not remarkable for the stable boundary layer (SBL). Moreover, the ABL shows significant discrepancies in the amplitude of the diurnal variation and the persistent time of the development between the eastern and western TP. In the early morning (08:00 BJT, Beijing time), the ABL height distribution is narrow, with a mean height below 450 m a.g.l. (above ground level) and a small west–east difference. The SBL observed at this moment accounts for 85 % of the total TP ABL. There is a wide distribution in the ABL height up to 4000 m a.g.l. and a large west–east difference for the total ABL height at noon (14:00 BJT), with a mean height above 2000 m a.g.l. in the western TP and around 1500 m a.g.l. in the eastern TP. The CBL accounts for 77 % of the total TP ABL at this moment, with more than 50 % of the CBL above 1900 m a.g.l. In the late afternoon (20:00 BJT), the CBL and SBL dominate the western and eastern TP, respectively, which results in a larger west–east difference of 1054.2 m between the western and eastern TP. The high ABL height in a cold environment over the western TP (relative to the plain areas) is similar to that in some extreme hot and arid areas such as Dunhuang and Taklimakan deserts. In general, for the western (eastern) TP, there is low (high) total cloud coverage, with large (small) solar radiation at the surface and dry (wet) soil. These features lead to high (low) sensible heat flux and thus promote (inhibit) the local ABL development. This study provides new insights for west–east structures of the summer ABL height, occurrence frequency, and diurnal amplitude over the TP region and the associated reasons.


2009 ◽  
Vol 48 (12) ◽  
pp. 2474-2486 ◽  
Author(s):  
Kun Yang ◽  
Jun Qin ◽  
Xiaofeng Guo ◽  
Degang Zhou ◽  
Yaoming Ma

Abstract To clarify the thermal forcing of the Tibetan Plateau, long-term coarse-temporal-resolution data from the China Meteorological Administration have been widely used to estimate surface sensible heat flux by bulk methods in many previous studies; however, these estimates have seldom been evaluated against observations. This study at first evaluates three widely used bulk schemes against Tibet instrumental flux data. The evaluation shows that large uncertainties exist in the heat flux estimated by these schemes; in particular, upward heat fluxes in winter may be significantly underestimated, because diurnal variations of atmospheric stability were not taken into account. To improve the estimate, a new method is developed to disaggregate coarse-resolution meteorological data to hourly according to statistical relationships derived from high-resolution experimental data, and then sensible heat flux is estimated from the hourly data by a well-validated flux scheme. Evaluations against heat flux observations in summer and against net radiation observations in winter indicate that the new method performs much better than previous schemes, and therefore it provides a robust basis for quantifying the Tibetan surface energy budget.


2018 ◽  
Vol 52 (7-8) ◽  
pp. 3997-4009 ◽  
Author(s):  
Lihua Zhu ◽  
Gang Huang ◽  
Guangzhou Fan ◽  
Xia Qü ◽  
Zhibiao Wang ◽  
...  

2021 ◽  
Vol 13 (2) ◽  
pp. 256
Author(s):  
Usman Mazhar ◽  
Shuanggen Jin ◽  
Wentao Duan ◽  
Muhammad Bilal ◽  
Md. Arfan Ali ◽  
...  

Being the highest and largest land mass of the earth, the Tibetan Plateau has a strong impact on the Asian climate especially on the Asian monsoon. With high downward solar radiation, the Tibetan Plateau is a climate sensitive region and the main water source for many rivers in South and East Asia. Although many studies have analyzed energy fluxes in the Tibetan Plateau, a long-term detailed spatio-temporal variability of all energy budget parameters is not clear for understanding the dynamics of the regional climate change. In this paper, satellite remote sensing and reanalysis data are used to quantify spatio-temporal trends of energy budget parameters, net radiation, latent heat flux, and sensible heat flux over the Tibetan Plateau from 2001 to 2019. The validity of both data sources is analyzed from in situ ground measurements of the FluxNet micrometeorological tower network, which verifies that both datasets are valid and reliable. It is found that the trend of net radiation shows a slight increase. The latent heat flux increases continuously, while the sensible heat flux decreases continuously throughout the study period over the Tibetan Plateau. Varying energy fluxes in the Tibetan plateau will affect the regional hydrological cycle. Satellite LE product observation is limited to certain land covers. Thus, for larger spatial areas, reanalysis data is a more appropriate choice. Normalized difference vegetation index proves a useful indicator to explain the latent heat flux trend. Despite the reduction of sensible heat, the atmospheric temperature increases continuously resulting in the warming of the Tibetan Plateau. The opposite trend of sensible heat flux and air temperature is an interesting and explainable phenomenon. It is also concluded that the surface evaporative cooling is not the indicator of atmospheric cooling/warming. In the future, more work shall be done to explain the mechanism which involves the complete heat cycle in the Tibetan Plateau.


2021 ◽  
Author(s):  
Lian Liu ◽  
Yaoming Ma ◽  
Massimo Menenti ◽  
Rongmingzhu Su ◽  
Nan Yao ◽  
...  

Abstract. Snow albedo is important to the land surface energy balance and to the water cycle. During snowfall and subsequent snowmelt, snow albedo is usually parameterized as functions of snow related variables in land surface models. However, the default snow albedo scheme in the widely used Noah land surface model shows evident shortcomings in land-atmosphere interactions estimates during snow events on the Tibetan Plateau. Here, we demonstrate that our improved snow albedo scheme performs well after including snow depth as an additional factor. By coupling the WRF and Noah models, this study comprehensively evaluates the performance of the improved snow albedo scheme in simulating eight snow events on the Tibetan Plateau. The modeling results are compared with WRF run with the default Noah scheme and in situ observations. The improved snow albedo scheme significantly outperforms the default Noah scheme in relation to air temperature, albedo and sensible heat flux estimates, by alleviating cold bias estimates, albedo overestimates and sensible heat flux underestimates, respectively. This in turn contributes to more accurate reproductions of snow event evolution. The averaged RMSE relative reductions (and relative increase in correlation coefficients) for air temperature, albedo, sensible heat flux and snow depth reach 27 % (5 %), 32 % (69 %), 13 % (17 %) and 21 % (108 %) respectively. These results demonstrate the strong potential of our improved snow albedo parameterization scheme for snow event simulations on the Tibetan Plateau. Our study provides a theoretical reference for researchers committed to further improving the snow albedo parameterization scheme.


Atmosphere ◽  
2019 ◽  
Vol 10 (7) ◽  
pp. 363 ◽  
Author(s):  
Min-Seong Kim ◽  
Byung Hyuk Kwon

In this work, sensible heat flux estimated using a bulk transfer method was validated with a three-dimensional ultrasonic anemometer or surface layer scintillometer at various sites. Results indicate that it remains challenging to obtain temperature and wind speed at an appropriate reference height. To overcome this, alternative observations using an unmanned aerial vehicle (UAV) were considered. UAV-based wind speed and sensible heat flux were indirectly estimated and atmospheric boundary layer (ABL) height was then derived using the sensible heat flux data. UAV-observed air temperature was measured by attaching a temperature sensor 40 cm above the rotary-wing of the UAV, and UAV-based wind speed was estimated using attitude data (pitch, roll, and yaw angles) recorded using the UAV’s inertial measurement unit. UAV-based wind speed was close to the automatic weather system-observed wind speed, within an error range of approximately 10%. UAV-based sensible heat flux estimated from the bulk transfer method corresponded with sensible heat flux determined using the eddy correlation method, within an error of approximately 20%. A linear relationship was observed between the normalized UAV-based sensible heat flux and radiosonde-based normalized ABL height.


2015 ◽  
Vol 28 (18) ◽  
pp. 7279-7296 ◽  
Author(s):  
Jinghua Chen ◽  
Xiaoqing Wu ◽  
Yan Yin ◽  
Hui Xiao

Abstract In this study, the summer clouds and precipitation over eastern China and the Tibetan Plateau (TP) are examined by analyzing the satellite observations and the apparent heat source Q1 and moisture sink Q2 computed from the NCEP–NCAR reanalysis. The vertically integrated [Q1] and [Q2] and precipitation have similar interannual variations in eastern China, revealing the important contribution from the condensation process. This relationship is weakened in east TP (ETP) because of the contribution of the surface sensible heat flux. In west TP (WTP), [Q1] is negatively correlated with precipitation because the surface sensible heat flux can be sharply weakened by the decrease of ground–air temperature difference due to rainfall. High clouds and deep convection are closely related with [Q1] and [Q2] over eastern China and ETP, while middle clouds and nimbostratus are responsible for the condensation over WTP. During the rainy summer, more convective rains and stronger upward motion appear in eastern China. Greater Q1 and Q2 and stronger upward motion present over ETP, while weaker Q1 and upward motion are observed over WTP in the rainy summer when compared to the dry summer. The cloud-water path over eastern China positively correlates with [Q1] and [Q2] over ETP. The deep convection over eastern China also positively correlates with the convection over ETP. These correlations suggest that moisture due to the evaporation of cloud water in anvil clouds detrained from the deep convection over ETP can be transported downstream and benefit the development of convection over eastern China.


2021 ◽  
Vol 25 (9) ◽  
pp. 4967-4981
Author(s):  
Lian Liu ◽  
Yaoming Ma ◽  
Massimo Menenti ◽  
Rongmingzhu Su ◽  
Nan Yao ◽  
...  

Abstract. Snow albedo is important to the land surface energy balance and to the water cycle. During snowfall and subsequent snowmelt, snow albedo is usually parameterized as functions of snow-related variables in land surface models. However, the default snow albedo scheme in the widely used Noah land surface model shows evident shortcomings in land–atmosphere interaction estimates during snow events on the Tibetan Plateau. Here, we demonstrate that our improved snow albedo scheme performs well after including snow depth as an additional factor. By coupling the Weather Research and Forecasting (WRF) and Noah models, this study comprehensively evaluates the performance of the improved snow albedo scheme in simulating eight snow events on the Tibetan Plateau. The modeling results are compared with WRF run with the default Noah scheme and in situ observations. The improved snow albedo scheme significantly outperforms the default Noah scheme in relation to air temperature, albedo and sensible heat flux estimates by alleviating cold bias estimates, albedo overestimates and sensible heat flux underestimates, respectively. This in turn contributes to more accurate reproductions of snow event evolution. The averaged root mean square error (RMSE) relative reductions (and relative increase in correlation coefficients) for air temperature, albedo, sensible heat flux and snow depth reach 27 % (5 %), 32 % (69 %), 13 % (17 %) and 21 % (108 %), respectively. These results demonstrate the strong potential of our improved snow albedo parameterization scheme for snow event simulations on the Tibetan Plateau. Our study provides a theoretical reference for researchers committed to further improving the snow albedo parameterization scheme.


Sign in / Sign up

Export Citation Format

Share Document