scholarly journals Supplementary material to "Observations of gas-phase products from the nitrate radical-initiated oxidation of four monoterpenes"

Author(s):  
Michelia Dam ◽  
Danielle C. Draper ◽  
Andrey Marsavin ◽  
Juliane L. Fry ◽  
James N. Smith
ChemInform ◽  
2010 ◽  
Vol 23 (31) ◽  
pp. no-no
Author(s):  
R. M. CHAMBERS ◽  
A. C. HEARD ◽  
R. P. WAYNE

Atmosphere ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 927
Author(s):  
Inmaculada Colmenar ◽  
Pilar Martín ◽  
Beatriz Cabañas ◽  
Sagrario Salgado ◽  
Florentina Villanueva ◽  
...  

An experimental product study of the reactions of furfural with the main tropospheric oxidants (Cl, OH and NO3) has been carried out using a Fourier Transform Infrared spectrophotometer (FTIR) and a gas chromatograph–mass spectrometer with a time of flight detector (GC–TOFMS). The main gas-phase products detected were 5-chloro-2(5H)-furanone, maleic anhydride, 2-nitrofuran and CO. Molar yields were quantified for the detected products in these reactions, thus suggesting the existence of nongaseous products that could not be observed with the analytical techniques employed. The formation of Secondary Organic Aerosol (SOA) from the oxidation of furfural with Cl atoms, OH, NO3 and ozone was investigated in a smog chamber in the absence of inorganic seed aerosols. The experimental results show the formation of ultrafine particles (less than 1 µm in diameter) for all of the studied reactions except for the nitrate radical. Given their small size, these ultrafine particles (<1 µm) can easily penetrate into the respiratory tract and reach the alveolar region. These particles, therefore, have the potential to cause severe damage to the respiratory system. The aerosol yield obtained, Y, was low (<0.04) in all cases, which means that the aerosols generated from furfural, under atmospheric conditions, could have little impact.


1986 ◽  
Vol 90 (11) ◽  
pp. 2491-2496 ◽  
Author(s):  
Philip D. Hammer ◽  
Edward J. Dlugokencky ◽  
Carleton J. Howard

Sign in / Sign up

Export Citation Format

Share Document