scholarly journals Kinetic Study of the Atmospheric Oxidation of a Series of Epoxy Compounds by OH Radicals

2021 ◽  
Author(s):  
Carmen Maria Tovar ◽  
Ian Barnes ◽  
Iustinian Gabriel Bejan ◽  
Peter Wiesen

Abstract. The kinetics of the gas-phase reactions of hydroxyl radicals with cyclohexene oxide (CHO), 1,2-epoxyhexane (EHX), 1,2-epoxybutane (12EB), trans-2,3-epoxybutane (tEB) and cis-2,3-epoxybutane (cEB) have been investigated using the relative rate technique. The experiments have been performed at (298 ± 3) K and (760 ± 10) Torr total pressure of synthetic air using different reference compounds in a 1080 l Quartz Reactor (QUAREC) and a 480 l Duran glass chamber. The following room temperature rate coefficients (cm3 molecule−1 s−1) were obtained: k1 (OH+CHO) = (5.93 ± 1.78) × 10−12, k2 (OH+EHX) = (5.77 ± 1.29) × 10−12, k3 (OH+12EB) = (1.98 ± 0.39) × 10−12, k4 (OH+cEB) = (1.50 ± 0.26) × 10−12, k5 (OH+tEB) = (1.81 ± 0.42) × 10−12. With the exception of previous studies for 1,2-epoxybutane and cyclohexene oxide, this is to the best of our knowledge the first kinetic study of the reaction of these compounds with OH radicals. Atmospheric lifetimes, reactivity trends and atmospheric implications are discussed considering the epoxy compound rate coefficients obtained in the present study. In addition to a direct comparison with the literature data where possible, the results from the present study are compared with values estimated from the Structure Activity Relationship method.

2003 ◽  
Vol 3 (6) ◽  
pp. 2233-2307 ◽  
Author(s):  
R. Atkinson

Abstract. The available database concerning rate constants for gas-phase reactions of the hydroxyl (OH) radical with alkanes through early 2003 is presented over the entire temperature range for which measurements have been made (~180-2000 K). Measurements made using relative rate methods are re-evaluated using recent rate data for the reference compound (generally recommendations from this review). In general, whenever more than one study has been carried out over an overlapping temperature range, recommended rate constants or temperature-dependent rate expressions are presented. The recommended 298 K rate constants, temperature-dependent parameters, and temperature ranges over which these recommendations are applicable are listed in Table 1.


2003 ◽  
Vol 3 (4) ◽  
pp. 4183-4358 ◽  
Author(s):  
R. Atkinson

Abstract. The available database concerning rate constants for gas-phase reactions of the hydroxyl (OH) radical with alkanes through early 2003 is presented ove the entire temperature range for which measurements have been made (~180–2000 K). Measurements made using relative rate methods are re-evaluated using recent rate data for the reference compound (generally recommendations from this review). In general, whenever more than one study has been carried out over an overlapping temperature range, recommended rate constants or temperature-dependent rate expressions are presented.


2008 ◽  
Vol 199 (1) ◽  
pp. 92-97 ◽  
Author(s):  
M.P. Sulbaek Andersen ◽  
E.J.K. Nilsson ◽  
O.J. Nielsen ◽  
M.S. Johnson ◽  
M.D. Hurley ◽  
...  

2017 ◽  
Author(s):  
Siripina Vijayakumar ◽  
Avinash Kumar ◽  
Balla Rajakuma

Abstract. Temperature dependent rate coefficients for the gas phase reactions of Cl atoms with 4-hexen-3-one and 5-hexen-2-one were measured over the temperature range of 298–363 K relative to 1-pentene, 1,3-butadiene and isoprene. Gas Chromatography (GC) was used to measure the concentrations of the organics. The derived temperature dependent Arrhenius expressions are k4-hexen-3-one+Cl (298–363 K) = (2.82 ± 1.76)×10−12exp [(1556 ± 438)/T] cm3 molecule−1 s−1 and k5-hexen-2-one+Cl (298–363 K) = (4.6 ± 2.4)×10−11exp[(646 ± 171)/T] cm3 molecule−1 s−1. The corresponding room temperature rate coefficients are (5.54 ± 0.41)×10−10 cm3 molecule−1 s−1 and (4.00 ± 0.37)×10−10 cm3 molecule−1 s−1 for the reactions of Cl atoms with 4-hexen-3-one and 5-hexen-2-one respectively. To understand the mechanism of Cl atom reactions with unsaturated ketones, computational calculations were performed for the reactions of Cl atoms with 4-hexen-3-one, 5-hexen-2-one and 3-penten-2-one over the temperature range of 275–400 K using Canonical Variational Transition state theory (CVT) with Small Curvature Tunneling (SCT) in combination with CCSD(T)/6-31+G(d, p)//MP2/6-311++G(d, p) level of theory. Atmospheric implications, reaction mechanism and feasibility of the title reactions are discussed in this manuscript.


2009 ◽  
Vol 41 (8) ◽  
pp. 532-542 ◽  
Author(s):  
L. Chen ◽  
T. Uchimaru ◽  
J. Mizukado ◽  
S. Kutsuna ◽  
K. Tokuhashi ◽  
...  

2017 ◽  
Author(s):  
Stephan Keßel ◽  
David Cabrera-Perez ◽  
Abraham Horowitz ◽  
Patrick R. Veres ◽  
Rolf Sander ◽  
...  

Abstract. Carbon suboxide, O = C = C = C = O, has been detected in ambient air samples and has the potential to be a noxious pollutant and oxidant precursor; however, its lifetime and fate in the atmosphere is largely unknown. In this work, we collect an extensive set of studies on the atmospheric chemistry of C3O2. Rate coefficients for the reactions of C3O2 with OH radicals and ozone were determined using relative rate techniques as k4 = (2.6 ± 0.5) × 10−12 cm3 molecule−1 s1 at 295 K (independent of pressure between ~ 25 and 1000 mbar) and k6 


1999 ◽  
Vol 13 (3) ◽  
pp. 175-189 ◽  
Author(s):  
Eric S. C. Kwok ◽  
Roger Atkinson ◽  
Janet Arey

Sign in / Sign up

Export Citation Format

Share Document