scholarly journals Kinetics and impacting factors of HO<sub>2</sub> uptake onto submicron atmospheric aerosols during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan

2021 ◽  
Vol 21 (16) ◽  
pp. 12243-12260
Author(s):  
Jun Zhou ◽  
Kei Sato ◽  
Yu Bai ◽  
Yukiko Fukusaki ◽  
Yuka Kousa ◽  
...  

Abstract. HO2 uptake kinetics onto ambient aerosols play pivotal roles in tropospheric chemistry but are not fully understood. Field measurements of aerosol chemical and physical properties should be linked to molecular-level kinetics; however, given that the HO2 reactivity of ambient aerosols is low, traditional analytical techniques are unable to achieve this goal. We developed an online approach to precisely investigate the lower-limit values of (i) the HO2 reactivities of ambient gases and aerosols and (ii) HO2 uptake coefficients onto ambient aerosols (γ) during the 2019 Air QUAlity Study (AQUAS) in Yokohama, Japan. We identified the effects of individual chemical components of ambient aerosols on γ. The results were verified in laboratory studies on individual chemical components: transition metals play a key role in HO2 uptake processes, and chemical components indirectly influence such processes (i.e., by altering aerosol surface properties or providing active sites), with smaller particles tending to yield higher γ values than larger particles owing to the limitation of gas-phase diffusion being smaller with micrometer particles and the distribution of depleting species such as transition metal ions being mostly distributed in accumulation mode of aerosol. The modeling of γ utilized transition metal chemistry derived by previous studies, further confirming our conclusion. However, owing to the high NO concentrations in Yokohama, peroxy radical loss onto submicron aerosols has a negligible impact on O3 production rate and sensitivity regime.

2021 ◽  
Author(s):  
Jun Zhou ◽  
Kei Sato ◽  
Yu Bai ◽  
Yukiko Fukusaki ◽  
Yuka Kousa ◽  
...  

Abstract. HO2 uptake kinetics onto ambient aerosols play pivotal roles in tropospheric chemistry but are not fully understood. Field measurements of aerosol chemical and physical properties should be linked to molecular level kinetics; however, given that the HO2 reactivity of ambient aerosols is low, traditional analytical techniques are unable to achieve this goal. We developed an online approach to precisely investigate (i) the HO2 reactivity of ambient gases and aerosols and (ii) HO2 uptake coefficients onto ambient aerosols (ɣ) during 2019 air quality study (AQUAS) in Yokohama, Japan. We identified the effects of individual chemical components of ambient aerosols on ɣ. The results verified in laboratory studies on individual chemical components: transition metals play a key role in HO2 uptake processes and chemical components indirectly influence such processes (i.e., through altering aerosol surface properties or providing active sites), with smaller particles tending to yield higher ɣ values than larger particles owing to the limitation of gas phase diffusion is smaller with micrometer particles and the distribution of depleting species such as transition metal ions is mostly distributed in accumulation mode of aerosol. The modeling of ɣ utilized transition metal chemistry derived by previous studies, further confirming our conclusion. However, owing to the high NO concentrations in Yokohama, peroxy radical loss onto submicron aerosols has a negligible impact on O3 production rate and sensitivity regime.


Author(s):  
Haibo Huang ◽  
Hui-Ying Zhang ◽  
Feng-Ying Cai ◽  
Y Li ◽  
Jian Lü ◽  
...  

Atomically dispersed transition metal ions doped CdZnS nanocrystals were synthesized to delicately tune the selectivity of CO2 photoreduction towards CH4, by which the CZS–Cu2+ achieved an excellent CO2–to–CH4 conversion rate...


1970 ◽  
Vol 74 (26) ◽  
pp. 4592-4594 ◽  
Author(s):  
A. Samuni ◽  
Gideon Czapski

2005 ◽  
Vol 70 (3) ◽  
pp. 371-391 ◽  
Author(s):  
Nevenka Rajic

This review is a brief summary of open-framework aluminophosphates and their transition metal-substituted modifications. The materials exhibit structural and compositional diversity, as well as a wide range of pore openings, which are crystallographically ordered and can be tuned by an appropriate choice of synthesis conditions. The diameters of the apertures, cages and channels fall in the range of 0.4 to about 1.5 nm, which recommends aluminophosphates for a novel area of application-nanocatalysis. Isomorphous substitution of the framework elements by transition metal ions which possess redox ability creates active sites inside the aluminophosphate lattice and opens routes towards shape selective bi-functional catalysis. In order to obtain an insight into the location of the transition metal ions, different characterization techniques have to be used.


Author(s):  
R. Ai ◽  
H.-J. Fan ◽  
L. D. Marks

It has been known for a long time that electron irradiation induces damage in maximal valence transition metal oxides such as TiO2, V2O5, and WO3, of which transition metal ions have an empty d-shell. This type of damage is excited by electronic transition and can be explained by the Knoteck-Feibelman mechanism (K-F mechanism). Although the K-F mechanism predicts that no damage should occur in transition metal oxides of which the transition metal ions have a partially filled d-shell, namely submaximal valence transition metal oxides, our recent study on ReO3 shows that submaximal valence transition metal oxides undergo damage during electron irradiation.ReO3 has a nearly cubic structure and contains a single unit in its cell: a = 3.73 Å, and α = 89°34'. TEM specimens were prepared by depositing dry powders onto a holey carbon film supported on a copper grid. Specimens were examined in Hitachi H-9000 and UHV H-9000 electron microscopes both operated at 300 keV accelerating voltage. The electron beam flux was maintained at about 10 A/cm2 during the observation.


Sign in / Sign up

Export Citation Format

Share Document