scholarly journals Robust winter warming over Eurasia under stratospheric sulfate geoengineering – the role of stratospheric dynamics

2021 ◽  
Vol 21 (9) ◽  
pp. 6985-6997
Author(s):  
Antara Banerjee ◽  
Amy H. Butler ◽  
Lorenzo M. Polvani ◽  
Alan Robock ◽  
Isla R. Simpson ◽  
...  

Abstract. It has been suggested that increased stratospheric sulfate aerosol loadings following large, low latitude volcanic eruptions can lead to wintertime warming over Eurasia through dynamical stratosphere–troposphere coupling. We here investigate the proposed connection in the context of hypothetical future stratospheric sulfate geoengineering in the Geoengineering Large Ensemble simulations. In those geoengineering simulations, we find that stratospheric circulation anomalies that resemble the positive phase of the Northern Annular Mode in winter are a distinguishing climate response which is absent when increasing greenhouse gases alone are prescribed. This stratospheric dynamical response projects onto the positive phase of the North Atlantic Oscillation, leading to associated side effects of this climate intervention strategy, such as continental Eurasian warming and precipitation changes. Seasonality is a key signature of the dynamically driven surface response. We find an opposite response of the North Atlantic Oscillation in summer, when no dynamical role of the stratosphere is expected. The robustness of the wintertime forced response stands in contrast to previously proposed volcanic responses.

2020 ◽  
Author(s):  
Antara Banerjee ◽  
Amy H. Butler ◽  
Lorenzo M. Polvani ◽  
Alan Robock ◽  
Isla R. Simpson ◽  
...  

Abstract. It has been suggested that increased stratospheric sulfate aerosol loadings following large, low latitude volcanic eruptions can lead to wintertime warming over Eurasia through dynamical stratosphere-troposphere coupling. We here investigate the proposed connection in the context of hypothetical future stratospheric sulfate geoengineering in the Geoengineering Large Ensemble simulations. In those geoengineering simulations, we find that stratospheric circulation anomalies that resemble the positive phase of the Northern Annular Mode in winter is a distinguishing climate response which is absent when increasing greenhouse gases alone are prescribed. This stratospheric dynamical response projects onto the positive phase of the North Atlantic Oscillation, leading to associated side-effects of this climate intervention strategy, such as continental Eurasian warming and precipitation changes. Seasonality is a key signature of the dynamically-driven surface response. We find an opposite response of the North Atlantic Oscillation in summer, when no dynamical role of the stratosphere is expected. The robustness of the wintertime forced response stands in contrast to previously proposed volcanic responses.


2004 ◽  
Vol 34 (12) ◽  
pp. 2615-2629 ◽  
Author(s):  
Thierry Penduff ◽  
Bernard Barnier ◽  
W. K. Dewar ◽  
James J. O'Brien

Abstract Observational studies have shown that in many regions of the World Ocean the eddy kinetic energy (EKE) significantly varies on interannual time scales. Comparing altimeter-derived EKE maps for 1993 and 1996, Stammer and Wunsch have mentioned a significant meridional redistribution of EKE in the North Atlantic Ocean and suggested the possible influence of the North Atlantic Oscillation (NAO) cycle. This hypothesis is examined using 7 yr of Ocean Topography Experiment (TOPEX)/Poseidon altimeter data and three ⅙°-resolution Atlantic Ocean model simulations performed over the period 1979–2000 during the French “CLIPPER” experiment. The subpolar–subtropical meridional contrast of EKE in the real ocean appears to vary on interannual time scales, and the model reproduces it realistically. The NAO cycle forces the meridional contrast of energy input by the wind. The analysis in this paper suggests that after 1993 the large amplitude of the NAO cycle induces changes in the transport of the baroclinically unstable large-scale circulation (Gulf Stream/North Atlantic Current) and, thus, changes in the EKE distribution. Model results suggest that NAO-like fluctuations were not followed by EKE redistributions before 1994, probably because NAO oscillations were weaker. Strong NAO events after 1994 were followed by gyre-scale EKE fluctuations with a 4–12-month lag, suggesting that complex, nonlinear adjustment processes are involved in this oceanic adjustment.


2019 ◽  
Vol 32 (22) ◽  
pp. 7697-7712 ◽  
Author(s):  
Yu Nie ◽  
Hong-Li Ren ◽  
Yang Zhang

Abstract Considerable progress has been made in understanding the internal eddy–mean flow feedback in the subseasonal variability of the North Atlantic Oscillation (NAO) during winter. Using daily atmospheric and oceanic reanalysis data, this study highlights the role of extratropical air–sea interaction in the NAO variability during autumn when the daily sea surface temperature (SST) variability is more active and eddy–mean flow interactions are still relevant. Our analysis shows that a horseshoe-like SST tripolar pattern in the North Atlantic Ocean, marked by a cold anomaly in the Gulf Stream and two warm anomalies to the south of the Gulf Stream and off the western coast of northern Europe, can induce a quasi-barotropic NAO-like atmospheric response through eddy-mediated processes. An initial southwest–northeast tripolar geopotential anomaly in the North Atlantic forces this horseshoe-like SST anomaly tripole. Then the SST anomalies, through surface heat flux exchange, alter the spatial patterns of the lower-tropospheric temperature and thus baroclinicity anomalies, which are manifested as the midlatitude baroclinicity shifted poleward and reduced baroclinicity poleward of 70°N. In response to such changes of the lower-level baroclinicity, anomalous synoptic eddy generation, eddy kinetic energy, and eddy momentum forcing in the midlatitudes all shift poleward. Meanwhile, the 10–30-day low-frequency anticyclonic wave activities in the high latitudes decrease significantly. We illustrate that both the latitudinal displacement of midlatitude synoptic eddy activities and intensity variation of high-latitude low-frequency wave activities contribute to inducing the NAO-like anomalies.


2010 ◽  
Vol 10 (7) ◽  
pp. 1379-1391 ◽  
Author(s):  
K. M. Nissen ◽  
G. C. Leckebusch ◽  
J. G. Pinto ◽  
D. Renggli ◽  
S. Ulbrich ◽  
...  

Abstract. A climatology of cyclones with a focus on their relation to wind storm tracks in the Mediterranean region (MR) is presented. Trends in the frequency of cyclones and wind storms, as well as variations associated with the North Atlantic Oscillation (NAO), the East Atlantic/West Russian (EAWR) and the Scandinavian variability pattern (SCAND) are discussed. The study is based on the ERA40 reanalysis dataset. Wind storm tracks are identified by tracking clusters of adjacent grid boxes characterised by extremely high local wind speeds. The wind track is assigned to a cyclone track independently identified with an objective scheme. Areas with high wind activity – quantified by extreme wind tracks – are typically located south of the Golf of Genoa, south of Cyprus, southeast of Sicily and west of the Iberian Peninsula. About 69% of the wind storms are caused by cyclones located in the Mediterranean region, while the remaining 31% can be attributed to North Atlantic or Northern European cyclones. The North Atlantic Oscillation, the East Atlantic/West Russian pattern and the Scandinavian pattern all influence the amount and spatial distribution of wind inducing cyclones and wind events in the MR. The strongest signals exist for the NAO and the EAWR pattern, which are both associated with an increase in the number of organised strong wind events in the eastern MR during their positive phase. On the other hand, the storm numbers decrease over the western MR for the positive phase of the NAO and over the central MR during the positive phase of the EAWR pattern. The positive phase of the Scandinavian pattern is associated with a decrease in the number of winter wind storms over most of the MR. A third of the trends in the number of wind storms and wind producing cyclones during the winter season of the ERA40 period may be attributed to the variability of the North Atlantic Oscillation.


2018 ◽  
Vol 57 (4) ◽  
pp. 921-935 ◽  
Author(s):  
Jonathan Edwards-Opperman ◽  
Steven Cavallo ◽  
David Turner

AbstractStratiform liquid-bearing clouds (LBCs), defined herein as either pure liquid or mixed-phase clouds, have a large impact on the surface radiation budget across the Arctic. LBCs lasting at least 6 h are observed at Summit, Greenland, year-round with a maximum in occurrence during summer. Mean cloud-base height is below 1 km for 85% of LBC cases identified, 59% have mean liquid water path (LWP) values between 10 and 40 g m−2, and most produce sporadic light ice-phase precipitation. During their occurrence, the atmosphere above the ice sheet is anomalously warm and moist, with southerly winds observed over much of the ice sheet, including at Summit. LBCs that occur when the North Atlantic Oscillation (NAO) is in the negative phase correspond to strong ridging centered over the Greenland Ice Sheet (GIS), allowing for southwesterly flow over the GIS toward Summit. During the positive phase of the NAO, the occurrence of LBCs corresponds to a cyclone located off the southeastern coast of the ice sheet, which leads to easterly-to-southeasterly flow toward Summit. Furthermore, air parcels at Summit frequently originate from below the elevation of Summit, indicating that orographic lift along the ice sheet is a factor in the occurrence of LBCs at Summit. LBCs are more frequently observed during the negative NAO, and both the LWP and precipitation rate are larger in LBCs occurring during this phase. Mean LWP in LBCs occurring during the negative NAO is 15 g m−2 larger than in LBCs occurring during the positive phase.


Sign in / Sign up

Export Citation Format

Share Document